Oxidation of Metals

, Volume 75, Issue 3–4, pp 167–181 | Cite as

Influence of Polishing-Induced Surface Hardening on the Adhesion of Oxide Scales Grown on a Ferritic Stainless Steel

  • Y. Madi
  • E. Salhi
  • F. Charlot
  • A. Galerie
  • Y. Wouters
Original Paper


The influence of surface preparation on the stress and adhesion of oxide scales formed on the ferritic stainless steel AISI 441 was studied. Steel coupons were surface-finished to different degrees of surface roughness from 400-grit SiC through to 1-micron diamond, and were also electropolished to remove the work hardened surface. Initial metal roughness was measured by optical profilometry. Oxidation was carried out at 800 °C under synthetic air for 100 h. Oxide residual stress was derived from the Raman shift of the main chromia line, and adhesion of oxide scales was quantitatively obtained using forced spallation by tensile straining. The results show that surface hardening is the most influential factor on adhesion, with the high dislocation-containing mirror-polished samples exhibiting the lowest adhesion energy (~4 J m−2), and the electropolished samples with non-mechanically affected surface exhibiting the highest adhesion energy (17 J m−2). Recrystallisation of the subsurface zone during heating to the oxidation temperature is thought to be the most influential factor reducing scale adhesion.


Ferritic stainless steel Polishing Surface hardening High temperature oxidation Oxide adhesion 



This work is part of the PhD thesis of Y. Madi, who thanks the Algerian government for supporting an 18-month stay in Grenoble. The authors are indebted to Dr. Francis Baillet for roughness measurements, and to Dr. Marc Verdier for nanoindentation testing.


  1. 1.
    M. Dokiya, Solid State Ionics 152–153, 383 (2002).CrossRefGoogle Scholar
  2. 2.
    Z. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, Journal of the Electrochemical Society 150, 1188 (2003).CrossRefGoogle Scholar
  3. 3.
    W. J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, Materials at High Temperatures 20, 115 (2003).CrossRefGoogle Scholar
  4. 4.
    K. Hilpert, D. Das, M. Miller, D. H. Peck, and R. Weib, Journal of the Electrochemical Society 143, 3642 (1996).CrossRefGoogle Scholar
  5. 5.
    Y. Matsuzaki and I. Yasuda, Journal of the Electrochemical Society 148, 126 (2001).CrossRefGoogle Scholar
  6. 6.
    P. Y. Hou and J. L. Smialek, Scripta Metallurgia 33, 1409 (1995).CrossRefGoogle Scholar
  7. 7.
    P. Y. Hou, Materials Science Forum 369–372, 23 (2001).CrossRefGoogle Scholar
  8. 8.
    P. Y. Hou and K. Priimak, Oxidation of Metals 63, 113 (2005).CrossRefGoogle Scholar
  9. 9.
    I. Belogolovsky, P. Y. Hou, C. P. Jacobson, and S. J. Visco, Journal of Power Sources 182, 259 (2008).CrossRefGoogle Scholar
  10. 10.
    J. Mougin, M. Dupeux, L. Antoni, and A. Galerie, Materials Science and Technology 9, 544 (2003).Google Scholar
  11. 11.
    S. Chandra-Ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie, and M. Dupeux, Materials Science and Technology 23, 497 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Chandra-Ambhorn, Y. Wouters, L. Antoni, F. Toscan, and A. Galerie, Journal of Power Sources 171, 688 (2007).CrossRefGoogle Scholar
  13. 13.
    P. Y. Hou and S. R. J. Saunders, Materials at High Temperatures 22, 119 (2005).Google Scholar
  14. 14.
    J. Mougin, M. Dupeux, L. Antoni, and A. Galerie, Materials Science and Engineering A359, 44 (2003).Google Scholar
  15. 15.
    A. Galerie, M. Dupeux, Y. Wouters, and F. Toscan, Materials Science Forum 522–523, 441 (2006).CrossRefGoogle Scholar
  16. 16.
    I. R. Sohn and T. Narita, Oxidation of Metals 59, 333 (2003).CrossRefGoogle Scholar
  17. 17.
    M. S. Li and P. Y. Hou, Acta Materialia 55, 443 (2007).CrossRefGoogle Scholar
  18. 18.
    G. Bamba, Y. Wouters, A. Galerie, G. Borchardt, S. Shimada, O. Heintz, and S. Chevalier, Scripta Materialia 57, 671 (2007).CrossRefGoogle Scholar
  19. 19.
    D. Caplan, M. J. Graham, and M. Cohen, Journal of the Electrochemical Society 119, 1205 (1973).CrossRefGoogle Scholar
  20. 20.
    J. Mougin, G. Lucazeau, A. Galerie, and M. Dupeux, Materials Science and Engineering A308, 118 (2001).Google Scholar
  21. 21.
    S. Mohan, D. Kanagaraj, R. Sindhuja, S. Vijayalakshmi, and N. G. Renganathan, Transaction of the IMF 79, 140 (2001).Google Scholar
  22. 22.
    H. Zhao, J. Van Humbeeck, J. Sohier, and I. De Scheerder, Journal of Materials Science: Materials in Medicine 13, 911 (2002).CrossRefGoogle Scholar
  23. 23.
    W. C. Oliver and G. M. Pharr, Journal of Materials Research 19, 3 (2004).CrossRefGoogle Scholar
  24. 24.
    J. Birnie, C. Craggs, D. J. Gardiner, and P. R. Graves, Corrosion Science 33, 1 (1992).CrossRefGoogle Scholar
  25. 25.
    J. Mougin, T. Le Bihan, and G. Lucazeau, Journal of the Physical Chemistry of Solids 62, 553 (2001).CrossRefGoogle Scholar
  26. 26.
    A. Galerie, J. Mougin, M. Dupeux, N. Rosman, and G. Lucazeau, in John Stringer Symposium on High Temperature Corrosion eds. P.F. Tortorelli, I.G. Wright, and P.H. Hou, (2001).Google Scholar
  27. 27.
    A. Galerie, F. Toscan, E. N’Dah, K. Przybylski, Y. Wouters, and M. Dupeux, Materials Science Forum 461–464, 631 (2004).CrossRefGoogle Scholar
  28. 28.
    S. Chandra-ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie and M. Dupeux, Materials Science and Technology 23, 497 (2007).CrossRefGoogle Scholar
  29. 29.
    F. Toscan, L. Antoni, M. Dupeux and A. Galerie, Materials at High Temperatures 20, 297 (2003).CrossRefGoogle Scholar
  30. 30.
    C. S. Giggins and F. S. Pettit, Transactions of the Metallurgical Society of AIME 245, 2509 (1969).Google Scholar
  31. 31.
    F. Toscan, L. Antoni, Y. Wouters, M. Dupeux, and A. Galerie, Materials Science Forum 461–464, 2004 (705).CrossRefGoogle Scholar
  32. 32.
    J. M. Rakowski, et al., Scripta Materialia 35, 1417 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Y. Madi
    • 1
  • E. Salhi
    • 2
  • F. Charlot
    • 3
  • A. Galerie
    • 4
  • Y. Wouters
    • 4
  1. 1.Département de Science des Matériaux, Faculté GM/GPUniversité des Sciences et Technologies Houari BoumedienneAlgerAlgérie
  2. 2.Laboratoire Science et Génie des Matériaux, Ecole Nationale PolytechniqueAlgerAlgérie
  3. 3.Consortium des Moyens Technologiques Communs, Institut Polytechnique de GrenobleSaint Martin d’Hères CedexFrance
  4. 4.SIMaP, Science et Ingénierie des Matériaux et Procédés, Institut Polytechnique de Grenoble/CNRS/UJFSaint-Martin d’Hères CedexFrance

Personalised recommendations