Advertisement

Oxidation of Metals

, Volume 75, Issue 1–2, pp 93–101 | Cite as

A Note on a Nonlinear Version of Wagner’s Classical Model of Internal Oxidation

  • Jean-Baptiste Leblond
Original Paper

Abstract

A nonlinear version of Wagner’s classical model of internal oxidation is presented. This version accounts for the fact that precipitates may act as diffusion barriers by introducing a heuristic dependence of the diffusion coefficients of elements upon the local volume fraction of oxides formed. Remarkably, the now nonlinear problem still admits an analytic solution. This solution reveals a sudden and discontinuous transition from internal oxidation to formation of some external oxidized scale, when the fraction of oxide precipitates reaches some critical value which can be calculated explicitly in terms of the respective specific volumes of the matrix and the oxide.

Keywords

Nonlinear Wagner model Analytic solution Internal oxidation External oxidation 

References

  1. 1.
    J. B. Brunac, D. Huin, and J. B. Leblond, Oxidation of Metals 73, 565 (2010).CrossRefGoogle Scholar
  2. 2.
    H. J. Christ, H. G. Sockel, and W. Christl, Werkstoffe und Korrosion 37, 385–390 (1986) (German).Google Scholar
  3. 3.
    D. L. Douglass, Oxidation of Metals 44, 81 (1995).CrossRefGoogle Scholar
  4. 4.
    F. Gesmundo and B. Gleeson, Oxidation of Metals 44, 211 (1995).CrossRefGoogle Scholar
  5. 5.
    F. Gesmundo F and Y Niu, Oxidation of Metals 51, 129 (1999).CrossRefGoogle Scholar
  6. 6.
    F. Gesmundo, F. Viani, and Y. Niu, Oxidation of Metals 45, 51 (1996).CrossRefGoogle Scholar
  7. 7.
    F. Gesmundo, F. Viani, and Y. Niu, Oxidation of Metals 47, 355 (1997).CrossRefGoogle Scholar
  8. 8.
    F. Gesmundo, P. Castello, F. Viani, and C. Roos, Oxidation of Metals 49, 237 (1998).CrossRefGoogle Scholar
  9. 9.
    D. Huin, V. Lanteri, D. Loison, P. Autesserre, and H. Gaye, in Microscopy of Oxidation—3, eds. S. B. Newcomb and J. A. Little (The Institute of Metals, London, 1997), pp. 573.Google Scholar
  10. 10.
    J. S. Kirkaldy, Canadian Metallurgical Quarterly 8, 35 (1969).Google Scholar
  11. 11.
    J. S. Kirkaldy, in Oxidation of Metals and Alloys, ed. D. L. Douglass (American Society of Metals, Metals Park, 1971), pp. 101.Google Scholar
  12. 12.
    G. Laflamme and J. E. Morral, Acta Metallurgica 26, 1791 (1978).CrossRefGoogle Scholar
  13. 13.
    Y. Niu and F. Gesmundo, Oxidation of Metals 56, 517 (2001).CrossRefGoogle Scholar
  14. 14.
    E. K. Ohriner and J. E. Morral, Scripta Metallurgica 13, 7 (1979).CrossRefGoogle Scholar
  15. 15.
    R. A. Rapp, Acta Metallurgica 9, 730 (1961).CrossRefGoogle Scholar
  16. 16.
    R. A. Rapp, Corrosion 21, 382 (1965).Google Scholar
  17. 17.
    F. H. Stott and G. C. Wood, Materials Science and Technology 4, 1072 (1988).Google Scholar
  18. 18.
    C. Wagner, Zeitschrift für Elektrochemie 63, 772–782 (1959) (German).Google Scholar
  19. 19.
    D. P. Whittle, F. Gesmundo, B. D. Bastow, and G. C. Wood, Oxidation of Metals 16, 159 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.UPMC Univ Paris 6, UMR 7190Institut Jean Le Rond d’AlembertParisFrance
  2. 2.CNRS, UMR 7190Institut Jean Le Rond d’AlembertParisFrance

Personalised recommendations