Advertisement

Oxidation of Metals

, 72:241 | Cite as

Effect of Low-Levels of Strontium on the Oxidation Behavior of Selected Molten Aluminum–Magnesium Alloys

  • O. Ozdemir
  • J. E. Gruzleski
  • R. A. L. Drew
Original Paper

Abstract

The effects of small additions of strontium on the oxidation behavior of aluminum–magnesium alloy melts were investigated by thermogravimetry at 750 °C for times up to 48 h. Oxidized samples were examined by FEGSEM, and phases formed within the oxide layer and in the alloy were identified by EDS, WDS and low-angle X-ray diffraction techniques. In the absence of Sr, the Al–Mg samples gained substantial amounts of weight by formation of spinel (MgAl2O4) at the oxide–metal interface. Samples containing Sr had significantly lower weight gains. A very significant decrease (98%) of total weight gain was observed for small Sr additions in the low Mg-bearing Al–Mg alloys. This change in oxidation behavior was linked to the presence of Sr enrichment of the liquid beneath the initial MgO layer suppressing the formation of spinel crystals.

Keywords

Molten oxidation Aluminum Magnesium Strontium 

References

  1. 1.
    ASM, Source Book on Selection and Fabrication of Aluminum Alloys (ASM, USA, 1978).Google Scholar
  2. 2.
    J. R. Davis, Corrosion of Aluminum and Aluminum Alloys (ASM International, USA, 1999).Google Scholar
  3. 3.
    F. H. Samuel, A. M. Samuel, H. W. Doty, and S. Valtierra, Metallurgical and Material Transcation 34A, 115 (2003).CrossRefGoogle Scholar
  4. 4.
    S. Impey, D. J. Stephenson, and J. R. Nicholls, in Proceedings of the First International Conference on the Microscopy of Oxidation (1991), p. 238.Google Scholar
  5. 5.
    S. Impey, D. J. Stephenson, and J. R. Nicholls, in Proceedings of the Second International Conference on the Microscopy of Oxidation (1993), p. 323.Google Scholar
  6. 6.
    D. J. Field, G. M. Scamans, and E. P. Butler, Institute of Physics Conference Series No. 52, 401 (1980).Google Scholar
  7. 7.
    D. J. Field, Treatise on Materials and Technology 31, 523 (1989).Google Scholar
  8. 8.
    D. J. Field, G. M. Scamans, and E. P. Butler, in Proceedings of the Conference of Environmental Degradation of Engineering Materials in Aggressive Environments, Blacksburg, VA (21–23 September, 1981), p. 393.Google Scholar
  9. 9.
    D. J. Field, G. M. Scamans, and E. P. Butler, Metallurgical Transactions 18A, 463 (1987).ADSGoogle Scholar
  10. 10.
    S. Impey, D. J. Stephenson, and J. R. Nicholls, Materials Science and Technology 4, 1126 (1988).Google Scholar
  11. 11.
    M. P. Silva and D. E. J. Talbot, in Light Metals, ed. P. G. Campbell (The Minerals, Metals & Materials Society, 1989), p. 1035.Google Scholar
  12. 12.
    A. Nylund, K. Mizuno, and I. Olefjord, Oxidation of Metals 50, 309 (1998).CrossRefGoogle Scholar
  13. 13.
    O. Salas and V. Jayaram, Journal of the American Ceramic Society 78, 609 (1995).CrossRefGoogle Scholar
  14. 14.
    M. H. Zayan, O. M. Jamjoon, and N. A. Razik, Oxidation of Metals 34, 323 (1990).CrossRefGoogle Scholar
  15. 15.
    M. H. Zayan, Oxidation of Metals 34, 465 (1990).CrossRefGoogle Scholar
  16. 16.
    S. T. Lee, D. V. Schaefer, and F. E. Lockwood, Aluminium 61, 504 (1985).Google Scholar
  17. 17.
    L. Rault, M. Allibert, M. Prin, A. Dubus, Light Metals, 345 (1996).Google Scholar
  18. 18.
    L. Rault and M. Allibert, Recents Progress in Genie Procedes 10, 49 (1996).Google Scholar
  19. 19.
    E. C. Partington, P. Grieveson, and B. Terry, Journal of Materials Science 33, 2447 (1998).CrossRefADSGoogle Scholar
  20. 20.
    H. P. Leighly and A. Alam, Journal of Physics F-Metal Physcis 14, 1573 (1984).CrossRefADSGoogle Scholar
  21. 21.
    J. A. S. Tenório and D. C. R. Espinosa, Oxidation of Metals 53, 361 (2000).CrossRefGoogle Scholar
  22. 22.
    B. Goldstein and J. Dresner, Surface Science 71, 15 (1978).CrossRefADSGoogle Scholar
  23. 23.
    G. J. Kaufman and E. L. Rooy, Aluminum Alloy Castings: Properties, Processes and Applications (AFS and ASM, USA, 2004).Google Scholar
  24. 24.
    D. J. Field, G. M. Scamans, and E. P. Butler, in Proceedings of the Conference of Environmental Degredation of Engineering Materials in Aggressive Environments, Blacksburg, VA (21–23 September, 1981), p. 393.Google Scholar
  25. 25.
    K. G. Wikle, in Proceedings of the 82nd Annual Meeting of American Foundrymen’s Society, Des Plaines, IL (1979), p. 513.Google Scholar
  26. 26.
    C. Houska, Metals and Materials 2, 100 (1988).Google Scholar
  27. 27.
    L. F. Mondolfo, Aluminum Alloys: Structure & Properties (Butterworth & Co, London, 1976).Google Scholar
  28. 28.
    D. Emadi, J. E. Gruzleski, and M. Pekguleryuz, Transactions of the American Foundrymen’s Society 104, 763 (1997).Google Scholar
  29. 29.
    K. Dennis, R. A. L. Drew, and J. E. Gruzleski, Aluminum Transactions 3, 31 (2000).Google Scholar
  30. 30.
    P. K. Yuen, K. Dennis, R. A. L. Drew, J. E. Gruzleski, in Molten Aluminum Processing, International AFS Conference, 6th, Orlando, FL, United States (11–13 November, 2001), p. 179.Google Scholar
  31. 31.
    C. W. Bale, A. D. Pelton, and W. T. Thompson, Facility for the Analysis of Chemical Thermodynamics (McGill University/Ecole Polytechnique, Canada, 2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • O. Ozdemir
    • 1
    • 2
  • J. E. Gruzleski
    • 1
  • R. A. L. Drew
    • 1
    • 3
  1. 1.Materials EngineeringMcGill UniversityMontrealCanada
  2. 2.Ford Otomotiv San. A.S.IstanbulTurkey
  3. 3.Faculty of Engineering and Computer ScienceConcordia UniversityMontrealCanada

Personalised recommendations