Advertisement

Oxidation of Metals

, 71:295 | Cite as

Oxidation Behaviour of TBC Systems on γ-TiAl Based Alloy Ti–45Al–8Nb

  • R. Braun
  • M. Fröhlich
  • C. Leyens
  • D. Renusch
Original Paper

Abstract

The lifetime of thermal barrier coating (TBC) systems on gamma titanium aluminides was determined in the temperature range between 850 °C and 950 °C under cyclic oxidation conditions in air. Coupons of the alloy Ti–45Al–8Nb (at.%) were coated by pack aluminizing. A subset of samples was subsequently annealed at 910 °C for 312 h in argon. During this heat treatment, the two-phase (Nb,Ti)Al3 plus TiAl2 microstructure of the coating transformed into single phase γ-TiAl. On pre-oxidised aluminized, annealed and bare samples, TBCs of yttria partially stabilized zirconia were deposited using electron-beam physical vapour deposition (EB-PVD). No spallation of the TBCs was observed in cyclic oxidation tests at 850 °C for up to 3,000 cycles of 1 h dwell time at high temperature. The two-phase aluminide coating provided effective oxidation protection due to the formation of a continuous alumina scale. The lifetime of this TBC system exceeded 1,400 cycles at 950 °C, whereas an aluminized and annealed sample failed after approximately 500 cycles. The TBC on bare substrate failed when thermally cycled at 900 °C. In contrast, no spallation occurred with an aluminized and annealed specimen at this temperature during the maximum exposure length of 1,000 cycles, probably related to an increased aluminium concentration in the subsurface region. EB-PVD zirconia top coats were well adherent to the alumina scale and the thermally grown mixed oxides. Failure of the TBC systems observed with bare and annealed samples was associated with spalled oxide scales formed on γ-TiAl.

Keywords

Gamma titanium aluminides Aluminide coating Thermal barrier coating Thermally grown oxide scale Oxidation resistance 

References

  1. 1.
    D. M. Dimiduk, Materials Science and Engineering A 263, 281 (1999).CrossRefGoogle Scholar
  2. 2.
    H. Clemens and H. Kestler, Advanced Engineering Materials 2, 551 (2000).CrossRefGoogle Scholar
  3. 3.
    W. Smarsly, H. Baur, G. Glitz, H. Clemens, T. Khan, and M. Thomas, in Structural Intermetallics 2001, eds. K. J. Hemker et al. (The Minerals, Metals & Materials Society, Warrendale, 2001), p. 25.Google Scholar
  4. 4.
    T. Tetsui, Materials Science and Engineering A 329–331, 582 (2002).CrossRefGoogle Scholar
  5. 5.
    H. Baur, D. B. Wortberg, and H. Clemens, in Gamma Titanium Aluminides 2003, eds. Y.-W. Kim, H. Clemens, and A. H. Rosenberger (The Minerals, Metals & Materials Society, Warrendale, 2003), p. 23.Google Scholar
  6. 6.
    E. A. Loria, Intermetallics 9, 997 (2001).CrossRefGoogle Scholar
  7. 7.
    D. Roth-Fagaraseanu and F. Appel, in Ti-2003, Science and Technology, eds. G. Lütjering and J. Albrecht (WILEY-VCH Verlag GmbH, Weinheim, 2004), p. 2899.Google Scholar
  8. 8.
    X. Wu, Intermetallics 14, 1114 (2006).CrossRefGoogle Scholar
  9. 9.
    F. Appel, J. D. H. Paul, M. Oehring, C. Buque, C. Klinkenberg, and T. Carneiro, in Niobium for High Temperature Applications, eds. Y.-W. Kim and T. Carneiro (The Minerals, Metals & Materials Society, Warrendale, 2004), p. 139.Google Scholar
  10. 10.
    M. Yoshihara and Y.-W. Kim, Intermetallics 13, 952 (2005).CrossRefGoogle Scholar
  11. 11.
    R. M. Imayev, V. M. Imayev, M. Oehring, and F. Appel, Intermetallics 15, 451 (2007).CrossRefGoogle Scholar
  12. 12.
    M. P. Brady, B. A. Pint, P. F. Tortorelli, and I. G. Wright, in Corrosion and Environmental Degradation, ed. M. Schütze, Vol. II (WILEY-VCH, Weinheim, 2000), p. 229.Google Scholar
  13. 13.
    Y. Shida and H. Anada, Oxidation of Metals 45, 197 (1996).CrossRefGoogle Scholar
  14. 14.
    T. Carneiro and Y.-W. Kim, Intermetallics 13, 1000 (2005).CrossRefGoogle Scholar
  15. 15.
    M. P. Brady, B. Gleeson, and I. G. Wright, Journal of Metals 52, 16 (2000).Google Scholar
  16. 16.
    L. Singheiser, L. Niewolak, U. Flesch, V. Shemet, and W. J. Quadakkers, Metallurgical and Materials Transactions A 34A, 2247 (2003).CrossRefADSGoogle Scholar
  17. 17.
    C. Leyens, R. Braun, M. Fröhlich, and P. Eh. Hovsepian, Journal of Metals 58, 17 (2006).Google Scholar
  18. 18.
    G. S. Fox-Rabinovich, D. S. Wilkinson, S. C. Veldhuis, G. K. Dosbaeva, and G. C. Weatherly, Intermetallics 14, 189 (2006).CrossRefGoogle Scholar
  19. 19.
    R. Mevrel, C. Duret, and R. Pichoir, Materials Science and Technology 2, 201 (1986).Google Scholar
  20. 20.
    T. C. Munro and B. Gleeson, Metallurgical and Materials Transactions A 27A, 3761 (1996).CrossRefADSGoogle Scholar
  21. 21.
    H. G. Jung and K. Y. Kim, Oxidation of Metals 58, 197 (2002).CrossRefGoogle Scholar
  22. 22.
    Z. D. Xiang, S. R. Rose, and P. K. Datta, Surface Engineering 18, 373 (2002).CrossRefGoogle Scholar
  23. 23.
    V. Gauthier, F. Dettenwanger, M. Schütze, V. Shemet, and W. J. Quadakkers, Oxidation of Metals 59, 233 (2003).CrossRefGoogle Scholar
  24. 24.
    J. L. Smialek, Corrosion Science 35, 1199 (1993).CrossRefGoogle Scholar
  25. 25.
    C. Zhou, H. Xu, and K. Y. Kim, Metallurgical and Materials Transaction A 31A, 2391 (2000).CrossRefGoogle Scholar
  26. 26.
    Z. Liu and G. Wang, Materials Science and Engineering A 397, 50 (2005).CrossRefGoogle Scholar
  27. 27.
    M. S. Chu and S. K. Wu, Acta Materialia 51, 3109 (2003).CrossRefGoogle Scholar
  28. 28.
    M. S. Chu and S. K. Wu, Oxidation of Metals 63, 1 (2005).CrossRefGoogle Scholar
  29. 29.
    M. Fröhlich, A. Ebach-Stahl, R. Braun, and C. Leyens, Materialwissenschaft und Werkstofftechnik 38, 667 (2007).CrossRefGoogle Scholar
  30. 30.
    N. P. Padture, M. Gell, and E. H. Jordan, Science 296, 280 (2002).PubMedCrossRefADSGoogle Scholar
  31. 31.
    M. J. Stiger, N. M. Yanar, M. G. Topping, F. S. Pettit, and G. H. Meier, Zeitschrift für Metallkunde 90, 1069 (1999).Google Scholar
  32. 32.
    C. Leyens, U. Schulz, K. Fritscher, M. Bartsch, M. Peters, and W. A. Kaysser, Zeitschrift für Metallkunde 92, 762 (2001).Google Scholar
  33. 33.
    U. Schulz, et al., Aerospace Science and Technology 7, 73 (2003).CrossRefGoogle Scholar
  34. 34.
    C. G. Levi, Current Opinion in Solid State and Materials Science 8, 77 (2004).CrossRefGoogle Scholar
  35. 35.
    M. Peters, K. Fritscher, G. Staniek, W. A. Kaysser, and U. Schulz, Materialwissenschaft und Werkstofftechnik 28, 357 (1997).CrossRefGoogle Scholar
  36. 36.
    D. R. Mumm and A. G. Evans, Acta Materialia 48, 1815 (2000).CrossRefGoogle Scholar
  37. 37.
    V. Gauthier, F. Dettenwanger, and M. Schütze, Intermetallics 10, 667 (2002).CrossRefGoogle Scholar
  38. 38.
    R. Braun, C. Leyens, and M. Fröhlich, Materials and Corrosion 56, 930 (2005).CrossRefGoogle Scholar
  39. 39.
    M. Fröhlich, R. Braun, and C. Leyens, Surface and Coatings Technology 201, 3911 (2006).CrossRefGoogle Scholar
  40. 40.
    R. Braun, M. Fröhlich, W. Braue, and C. Leyens, Surface and Coatings Technology 202, 676 (2007).CrossRefGoogle Scholar
  41. 41.
    R. Braun, M. Fröhlich, A. Ebach-Stahl, and C. Leyens, Materials and Corrosion 59, 539 (2008).CrossRefGoogle Scholar
  42. 42.
    C. Leyens, R. Braun, and M. Peters, in Ti-2003, Science and Technology, eds. G. Lütjering and J. Albrecht (WILEY-VCH Verlag GmbH, Weinheim, 2004), p. 2441.Google Scholar
  43. 43.
    A. Hellwig, M. Palm, and G. Inden, Intermetallics 6, 79 (1998).CrossRefGoogle Scholar
  44. 44.
    F. Dettenwanger, E. Schumann, M. Rühle, J. Rakowski, and G. H. Meier, Oxidation of Metals 50, 269 (1998).CrossRefGoogle Scholar
  45. 45.
    C. Zhou, H. Xu, S. Gong, and K. Y. Kim, Materials Science and Engineering A 341, 169 (2003).CrossRefGoogle Scholar
  46. 46.
    R. Streiff and S. Poize, in High Temperature Corrosion, ed. R. A. Rapp (National Association of Corrosion Engineers, Houston, 1983), p. 591.Google Scholar
  47. 47.
    T. C. Munro and B. Gleeson, Materials Science Forum 251–254, 753 (1997).CrossRefGoogle Scholar
  48. 48.
    A. Donchev, B. Gleeson, and M. Schütze, Intermetallics 11, 387 (2003).CrossRefGoogle Scholar
  49. 49.
    A. Donchev, E. Richter, M. Schütze, and R. Yankov, Intermetallics 14, 1168 (2006).CrossRefGoogle Scholar
  50. 50.
    D. R. Clarke and C. G. Levi, Annual Review of Materials Research 33, 383 (2003).CrossRefGoogle Scholar
  51. 51.
    P. Kofstad, High Temperature Corrosion (Elsevier, Amsterdam, 1988).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • R. Braun
    • 1
  • M. Fröhlich
    • 1
  • C. Leyens
    • 1
    • 2
  • D. Renusch
    • 3
  1. 1.German Aerospace Center (DLR), Institute of Materials ResearchKölnGermany
  2. 2.Physical Metallurgy and Materials TechnologyTechnical University of Brandenburg at CottbusCottbusGermany
  3. 3.Karl-Winnacker-Institute of Dechema e.V.FrankfurtGermany

Personalised recommendations