Oxidation of Metals

, Volume 71, Issue 3–4, pp 157–172 | Cite as

Oxidation Behaviour of Model Cobalt-Rhenium Alloys During Short-Term Exposure to Laboratory Air at Elevated Temperature

  • B. Gorr
  • V. Trindade
  • S. Burk
  • H.-J. Christ
  • M. Klauke
  • D. Mukherji
  • J. Rösler
Original Paper


The alloys being used in high-temperature systems such as stationary gas turbines and aircraft engines are iron-, cobalt- and nickel-based superalloys, amongst which the latter is the most widely used for highest temperatures. However, the use of Ni-based alloys is limited to temperatures below 1,100 °C. The experimental Co–Re-based alloys are promising for high-temperature applications for service temperatures beyond 1,200 °C. The purpose of the present investigations, at this still early stage of the alloy development, is to gain a first insight into the oxidation mechanisms and to find ways to improve oxidation resistance of this class of materials. Thermogravimetric studies in combination with microstructural examinations of six model Co–Re alloys with different compositions showed the negative influence of rhenium on the oxidation resistance of Co-based alloys due to evaporation of rhenium oxide(s). Oxidation at 1,000 °C in air yielded an oxide scale, that consists of a Co-oxide outer layer on a thick and porous Co–Cr oxide and a semicontinuous and therefore non-protective Cr-oxide film on the base metal substrate. This allowed for the vaporization of rhenium oxide formed during oxidation and hence led to a loss of Re. Computer-aided thermodynamic calculations were carried out to supplement the experimental analyses and were found to reasonably predict the stability ranges of the various oxide phases observed.


Co–Re alloys High-temperature oxidation Re-oxide Thermodynamic calculation 



This study has been supported by Deutsche Forschungsgemeinschaft in the framework of the DFG research group “Beyond Ni-base Superalloys”


  1. 1.
    C. R. Brooks, Heat Treatment, Structure and Properties of Nonferrous Alloys (American Society for Metals, Ohio, 1984).Google Scholar
  2. 2.
    J. Rösler, D. Mukherji, and T. Baranski, Advanved Engineering Materials 9, 876 (2007).CrossRefGoogle Scholar
  3. 3.
    P. C. Sullivan, M. J. Donachie, and F. R. Morral, Cobalt-Base Superalloy-1970, Cobalt Monograph Series (Cobalt Information Center, Brussels, 1970).Google Scholar
  4. 4.
    G. E. Andre, R. Breckpot, L. Habraken, J. C. Jungers, P. Kipfer, G. V. JRaynor, and H. Schuiling, Cobalt Monograph (Cobalt Information Center, Brussels, 1960).Google Scholar
  5. 5.
    R. Bürgel, Hochtemperaturwerkstofftechnik (Vieweg, Braunschweig, 2001).Google Scholar
  6. 6.
    P. S. Liu and K. M. Liang, Oxidation of Metals 53, 351 (2000).CrossRefGoogle Scholar
  7. 7.
    P. S. Liu, K. M. Liang, H. Y. Zhou, H. R. Guan, X. F. Sun, T. Jin, and K. N. Yang, Oxidation of Metals 55, 543 (2000).CrossRefGoogle Scholar
  8. 8.
    W. Betteridge, Cobalt and its Alloys (Ellis Horwood Ltd., Chichester, 1982).Google Scholar
  9. 9.
    P. C. Patnaik, High Temperature Oxidation and Hot Corrosion of Nickel and Cobalt Based Superalloys, Aeronautical Note NAE-AN-33 NRC No. 25075 (Ottawa, 1985).Google Scholar
  10. 10.
    R. L. Dreshfield, J. C. Freche, and G. D. Sandrock, Modification of High-Temperature Cobalt-Tungsten Alloys for Improved Stability, Report NASA TN D-6147 (Ohio, 1971).Google Scholar
  11. 11.
    T. C. Chou, A. Joshi, and C. M. Packer, Scripta Metallurgica et Materialia 28, 1565 (1993).CrossRefGoogle Scholar
  12. 12.
    B. D. Bryskin, Advanced Materials & Processes 10, 83 (1998).Google Scholar
  13. 13.
    Y. N. Gornostyrev, M. I. Katsnel’son, A. V. Trefilov, and R. F. Sabiryanov, The Physics of Metals and Metallography 74, 421 (1992).Google Scholar
  14. 14.
    B. D. Bryskin, Heat Treating 6, 10 (1993).Google Scholar
  15. 15.
    L. Huang, X. F. Sun, H. R. Guang, and Z. Q. Hu, Surface & Coatings Technology 200, 6863 (2006).CrossRefGoogle Scholar
  16. 16.
    C. T. Liu, X. F. Sun, H. R. Guang, and Z. Q. Hu, Surface & Coatings Technology 197, 39 (2005).CrossRefGoogle Scholar
  17. 17.
    K. B. Lebedev, The Chemistry of Rhenium (Butterworths, London, 1962).Google Scholar
  18. 18.
    M. Klauke, D. Mukherji, B. Gorr, J. Rösler, and H.-J. Christ, International Journal of Materials Research, 100, 1 (2009).Google Scholar
  19. 19.
    V. B. Trindade, Hochtemperaturoxidation Chromlegierter Stähle und von Nickel-Basislegierungen: Experimentelle Untersuchung und Computersimulation, Ph.D. thesis (Shaker Verlag, Aachen, 2005).Google Scholar
  20. 20.
    C. K. Kim and L. W. Hobbs, Oxidation of Metals 47, 69 (1997).CrossRefGoogle Scholar
  21. 21.
    P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, London, 1988).Google Scholar
  22. 22.
    P. Kofstad, Oxidation of Metals 24, 265 (1985).CrossRefGoogle Scholar
  23. 23.
    F. H. Stott, Oxidation of Metals 11, 141 (1977).CrossRefGoogle Scholar
  24. 24.
    B. A. Pint, Oxidation of Metals 39, 167 (1933).CrossRefGoogle Scholar
  25. 25.
    K. P. Lillerud and P. Kofstad, Oxidation of Metals 17, 127 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • B. Gorr
    • 1
  • V. Trindade
    • 1
  • S. Burk
    • 1
  • H.-J. Christ
    • 1
  • M. Klauke
    • 2
  • D. Mukherji
    • 2
  • J. Rösler
    • 2
  1. 1.Institut für WerkstofftechnikUniversität SiegenSiegenGermany
  2. 2.Institut für WerkstoffeTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations