Oxidation of Metals

, 71:77 | Cite as

Investigation of the Evolution of the Oxide Scale Formed on 310 Stainless Steel Oxidized at 600 °C in Oxygen with 40% Water Vapour Using FIB and TEM

  • F. Liu
  • J. E. Tang
  • H. Asteman
  • J.-E. Svensson
  • L.-G. Johansson
  • M. Halvarsson
Original Paper


Detailed microstructure investigations were performed on oxide scales formed on 310 stainless steel exposed isothermally at 600 °C to O2 with 40% water vapour for 1–336 h. FIB microscopy was used to study the evolution of the surface morphology and to prepare cross-section TEM thin foils of the oxide scales. The foils were investigated by analytical transmission electron microscopy. The results showed that a thin protective base oxide scale had formed after 1 h. Due to Cr loss from the oxide scale through water vapour induced Cr evaporation, local breakaway oxidation occurs, resulting in the formation of oxide nodules. The development of these nodules depends on whether a new Cr-rich healing layer is formed or not. A model for the evolution of the oxide scale is proposed based on the results regarding the composition and distribution of various phases in the oxide scale and subjacent steel.


Fe–Cr–Ni alloy High temperature oxidation Water vapour Microstructure FIB TEM EDX 



This work was carried out within the Swedish High Temperature Corrosion centre (HTC) with financial support partly provided by the Swedish National Research Council (VR).


  1. 1.
    W. H. Hatfield, in Iron and Steel Institute—Meeting, Vol. 9 (Iron and Steel Institute, 1927), p. 26.Google Scholar
  2. 2.
    C. T. Fujii and R. A. Meussner, Journal of Electrochemical Society 111, 1215 (1964).CrossRefGoogle Scholar
  3. 3.
    I. Kvernes, M. Oliveira, and P. Kofstad, Corrosion Science 17, 237 (1977).CrossRefGoogle Scholar
  4. 4.
    P. Kofstad, in High Temperature Corrosion, Elsevier Applied Science, Chapter 11 (1988), pp. 342–387. Google Scholar
  5. 5.
    D. Caplan and M. Cohen, Journal of Electrochemical Society 108, 438 (1961).CrossRefGoogle Scholar
  6. 6.
    D. Caplan and M. Cohen, Corrosion 15, 141t (1959).Google Scholar
  7. 7.
    A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).CrossRefGoogle Scholar
  8. 8.
    M. Thiele, H. Teichmann, W. Schwarz, and W. J. Quadakkers, VGB Kraftwerkstechnik 2, 129 (1997).Google Scholar
  9. 9.
    A. Holt and P. Kofstad, Solid State Ionics 69, 137 (1994).CrossRefGoogle Scholar
  10. 10.
    S. Jiannian, Z. Lingjiang, and L. Tiefan, Oxidation of Metals 48, 347 (1997).CrossRefGoogle Scholar
  11. 11.
    W. J. Quadakkers and P. J. Ennis, VGB Kraftwerkstechnik 2, 123 (1997).Google Scholar
  12. 12.
    H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Norell, Oxidation of Metals 52, 95 (1999).CrossRefGoogle Scholar
  13. 13.
    H. Asteman, J.-E. Svensson, and L.-G. Johansson, Oxidation of Metals 57, 193 (2002).CrossRefGoogle Scholar
  14. 14.
    K. Segerdal, J.-E. Svensson, and L.-G. Johansson, Materials and Corrosion 53, 247 (2002).CrossRefGoogle Scholar
  15. 15.
    K. Segerdal, J.-E. Svensson, and L.-G. Johansson, Materials and Corrosion 53, 479 (2002).CrossRefGoogle Scholar
  16. 16.
    H. Asteman, K. Segerdal, J.-E. Svensson, and L.-G. Johansson, Materials Science Forum 369–372, 277 (2001).Google Scholar
  17. 17.
    H. Asteman, J.-E. Svensson, and L.-G. Johansson, Corrosion Science 44, 2635 (2002).CrossRefGoogle Scholar
  18. 18.
    A. Yamauchi, K. Kurokawa, and H. Takahashi, Oxidation of Metals 59, 517 (2003).CrossRefGoogle Scholar
  19. 19.
    E. Opila, Materials Science Forum 461–464, 765 (2004).CrossRefGoogle Scholar
  20. 20.
    G. C. Wood and D. P. Whittle, Corrosion Science 7, 763 (1967).CrossRefGoogle Scholar
  21. 21.
    J. E. Tang, F. Liu, H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Halvarsson, Materials at High Temperatures 24, 27 (2007).CrossRefGoogle Scholar
  22. 22.
    I. Saeki, T. Saito, R. Furuichi, H. Konno, T. Nakamura, K. Mabuchi, and M. Itoh, Corrosion Science 40, 1295 (1998).CrossRefGoogle Scholar
  23. 23.
    X. Peng, J. Yan, Y. Zhou, and F. Wang, Acta Materialia 53, 5079 (2005).CrossRefGoogle Scholar
  24. 24.
    S. N. Basu and G. J. Yurek, Oxidation of Metals 36, 281 (1991).CrossRefGoogle Scholar
  25. 25.
    G. J. Yurek, D. Eisen, and A. Garratt-Reed, Metallurgical and Materials Transactions A 13, 473 (1982).CrossRefGoogle Scholar
  26. 26.
    D. R. Baer and M. D. Merz, Metallurgical Transactions A 11A, 1973 (1980).CrossRefADSGoogle Scholar
  27. 27.
    M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson, and L.-G. Johansson, Corrosion Science 48, 2014 (2006).CrossRefGoogle Scholar
  28. 28.
    H. E. Evans, A. T. Donaldson, and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).CrossRefGoogle Scholar
  29. 29.
    H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster, Oxidation of Metals 14, 235 (1980).CrossRefGoogle Scholar
  30. 30.
    F. Liu, J. E. Tang, T. Jonsson, S. Cnovic, K. Segerdal, J.-E. Svensson, and M. Halvarsson, Oxidation of Metals 66, 295 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • F. Liu
    • 1
  • J. E. Tang
    • 1
  • H. Asteman
    • 2
    • 3
  • J.-E. Svensson
    • 2
  • L.-G. Johansson
    • 4
  • M. Halvarsson
    • 1
  1. 1.Microscopy and Microanalysis, Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden
  2. 2.Environmental Inorganic Chemistry, Department of Chemical and Biological EngineeringChalmers University of TechnologyGöteborgSweden
  3. 3.Schmidt + Clemens GmbH + Co. KG, Central Technology DevelopmentLindlarGermany
  4. 4.Department of Chemical and Biological Engineering, High Temperature Corrosion CentreChalmers University of TechnologyGöteborgSweden

Personalised recommendations