Oxidation of Metals

, Volume 70, Issue 1–2, pp 85–102 | Cite as

Comparison of the Isothermal Oxidation Behavior of As-Cast Cu–17%Cr and Cu–17%Cr–5%Al Part I: Oxidation Kinetics

  • S. V. Raj
Original Paper


The isothermal oxidation kinetics of as-cast Cu–17%Cr and Cu–17%Cr–5%Al in air were studied between 773 and 1,173 K under atmospheric pressure. These observations reveal that Cu–17%Cr–5%Al oxidizes at significantly slower rates than Cu–17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu–17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 ± 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu–17%Cr–5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu–17%Cr–5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.


Isothermal oxidation Cu–Cr alloys Cu–Cr–Al Copper alloys Oxidation kinetics 



The author thanks Mr. Donald Humphrey for conducting the isothermal oxidation tests and Mr. Dereck Johnson for conducting chemical analyses of the specimens.


  1. 1.
    H. J. Kasper, in S. F. Morea and S. T. Wu (eds.), Advanced High Pressure O 2 /H 2 Technology, NASA CP 2372 (George C. Marshall Space Flight Center, Huntsville, AL, 1985), p. 36.Google Scholar
  2. 2.
    D. B. Morgan and A. C. Kobayashi, Main Combustion Chamber and Cooling Technology Study – Final Report, NASA CR 184345 (NASA Marshall Space Flight Center, Huntsville, AL, 1989).Google Scholar
  3. 3.
    L. Ogbuji and D. L. Humphrey, Oxidation of Metals 60, 271 (2003).CrossRefGoogle Scholar
  4. 4.
    E. Scheil, Zeit Für Metallkde 29, 209 (1937); translated version in NACA-TM-1338, National Advisory Committee for Aeronautics, Washington, DC (1952).Google Scholar
  5. 5.
    H. Nishimura, Suyiokwai-shi 9, 655 (1938).Google Scholar
  6. 6.
    G. Valensi, Pittsburgh International Conference on Surface Reactions (Electrochemical Society, Pittsburgh, PA, 1948).Google Scholar
  7. 7.
    R. F. Tylecote, Journal of Institute Metals 78, 259 (1950–51).Google Scholar
  8. 8.
    R. F. Tylecote, Journal of Institute Metals 78, 301 (1950–51).Google Scholar
  9. 9.
    R. F. Tylecote, Journal of Institute Metals 78, 327 (1950–51).Google Scholar
  10. 10.
    D. W. Bridges, J. P. Baur, G. S. Baur, and W. M. Fassell, Journal of Electrochemical Society 103, 475 (1956).CrossRefGoogle Scholar
  11. 11.
    P. Kofstad, Nature 179, 1362 (1957).CrossRefGoogle Scholar
  12. 12.
    J. A. Sartell and C. H. Li, Transactions of the American Society of Metals 55, 58 (1962).Google Scholar
  13. 13.
    L. Czerski, S. Mrowec, and T. Werber, Roczniki Chemii 38, 643 (1964).Google Scholar
  14. 14.
    P. Kofstad, High-Temperature Oxidation of Metals (Wiley, New York, 1966).Google Scholar
  15. 15.
    O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys (Butterworths, London, UK, 1967).Google Scholar
  16. 16.
    S. Mrowec and A. Stoklosa, Oxidation of Metals 3, 291 (1971).CrossRefGoogle Scholar
  17. 17.
    P. C. Donovan and C. J. Barton, Metall. Trans 4, 1765 (1973).CrossRefGoogle Scholar
  18. 18.
    F. Gesmundo, C. De Asmundis, and S. Merlo, Werkstoffe Und Korrosion - Materials and Corrosion 30, 114 (1979).CrossRefGoogle Scholar
  19. 19.
    J. H. Park and K. Natesan, Oxidation of Metals 39, 411 (1993).CrossRefGoogle Scholar
  20. 20.
    Y. Niu, F. Gesmundo, F. Viani, and D. L. Douglass, Oxidation of Metals 48, 357 (1997).CrossRefGoogle Scholar
  21. 21.
    K. T. Chiang, G. H. Meier, and F. S. Pettit, in Microscopy of Oxidation, eds., S. B. Newcombe and J. A. Little (The Institute of Metals, London, UK, 1997), p. 453.Google Scholar
  22. 22.
    Y. Zhu, K. Mimura, J. W. Lim, M. Isshiki, and Q. Jiang, Metallurgical and Materials Transactions A 37A, 1231 (2006).Google Scholar
  23. 23.
    F. Gesmundo, Y. Niu, F. Viania, and D. L. Douglass, Oxidation of Metals 49, 147 (1998).CrossRefGoogle Scholar
  24. 24.
    G. Y. Fu, Y. Niu, and F. Gesmundo, Corrosion Science 45, 559 (2003).CrossRefGoogle Scholar
  25. 25.
    L. U. Ogbuji, Surface and Coatings Technology 197, 327 (2005).CrossRefGoogle Scholar
  26. 26.
    D. J. Chakrabarti and D. E. Laughlin, Bulletin of Alloy Phase Diagrams 5, 59 (1984).CrossRefGoogle Scholar
  27. 27.
    T. B. Massalski, H. Okamoto, and P. R. Subramanian (eds.), Binary Alloy Phase Diagrams (ASM International, Materials Park, Cleveland, OH, 1990).Google Scholar
  28. 28.
    K. T. Chiang, P. D. Krotz, and J. L. Yuen, Surface and Coatings Technology 76, 14 (1995).CrossRefGoogle Scholar
  29. 29.
    K. T. Chiang and J. P. Ampaya, Surface and Coatings Technology 78, 243 (1996).CrossRefGoogle Scholar
  30. 30.
    T. A. Wallace, R. K Clark, and K. T. Chiang, Journal of Spacecraft and Rockets 35, 546 (1998).CrossRefGoogle Scholar
  31. 31.
    S. V. Raj, L. J. Ghosn, C. Robinson, and D. Humphrey, Materials Science & Engineering A 457, 300 (2007).CrossRefGoogle Scholar
  32. 32.
    S. V. Raj, Unpublished research (NASA Glenn Research Center, Cleveland, OH, 2003).Google Scholar
  33. 33.
    J. S. Dunn, Journal of Institute Metals 46, 25 (1934).Google Scholar
  34. 34.
    K. W. Frohlich, Zeitschrift fur Metallkunde 28, 368 (1936).Google Scholar
  35. 35.
    L. E. Price and G. J. Thomas, Journal of Institute Metals 63, 21 (1938).Google Scholar
  36. 36.
    J. P. Dennison and A. Preece, Journal of Institute Metals 81, 229 (1952).Google Scholar
  37. 37.
    J. C. Blade and A. Preece, Journal of Institute Metals 88, 427 (1959).Google Scholar
  38. 38.
    M. D. Saderson and J. C. Scully, Oxidation of Metals 3, 59 (1971).CrossRefGoogle Scholar
  39. 39.
    K. Hauffe and E. Ofulue, Werkstoffe und Korrosion – Materials and Corrosion 23, 351 (1972).CrossRefGoogle Scholar
  40. 40.
    G. Plascencia, T. Utigard, and T. Marín, Journal of Metals 57, 80 (2005).Google Scholar
  41. 41.
    J. L. Smialek, G. H. Meier, in Superalloys II, eds. C. T. Sims, N. S. Stoloff, and W. C. Hagel (Wiley, New York, 1987) p. 293.Google Scholar
  42. 42.
    G. Ghosh, in Handbook of Ternary Alloy Phase Diagrams, eds. G. Petzow and G. Effenberg, Vol. 4 (VCH Publishers, New York, 1991), p. 311.Google Scholar
  43. 43.
    B. Grushko, E. Kowalska-Strzeciwilk, B. Przepiorzynski, and M. Surowiec, Journal of Alloys and Compounds 417, 121 (2006).CrossRefGoogle Scholar
  44. 44.
    Y. Niu, S. Y. Wang, and F. Gesmundo, Oxidation of Metals 65, 285 (2006).CrossRefGoogle Scholar
  45. 45.
    S. Y. Wang, F. Gesmundo, W. T. Wu, and Y. Niu, Scripta Materialia 54, 1563 (2006).CrossRefGoogle Scholar
  46. 46.
    S. V. Raj, C. Barrett, J. Karthikeyan, and R. Garlick, Surface and Coatings Technology 201, 7222 (2007).CrossRefGoogle Scholar
  47. 47.
    W. J. Moore, Y. Ebisuzaki, and J. A. Sluss, Journal of Physical Chemistry 62, 1438 (1958).CrossRefGoogle Scholar
  48. 48.
    Y. Zhu, K. Mimura, and M. Isshiki, Oxidation of Metals 62, 207 (2004).CrossRefGoogle Scholar
  49. 49.
    W. Kai, G. W. Fan, P. C. Chen, and Y. T. Lin, Oxidation of Metals 61, 439 (2004).CrossRefGoogle Scholar
  50. 50.
    H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).CrossRefGoogle Scholar
  51. 51.
    A. F. Wright and J. S. Nelson, Journal of Applied Physics 92, 5849 (2002).CrossRefGoogle Scholar
  52. 52.
    R. H. Doremus, Journal of Applied Physics 95, 3217 (2004).CrossRefGoogle Scholar
  53. 53.
    H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982), p. 99.Google Scholar

Copyright information

© U.S. Government 2008

Authors and Affiliations

  1. 1.NASA Glenn Research CenterClevelandUSA

Personalised recommendations