Advertisement

Oxidation of Metals

, Volume 69, Issue 1–2, pp 37–62 | Cite as

High Temperature Corrosion of Cast Alloys in Exhaust Environments. II—Cast Stainless Steels

  • F. Tholence
  • M. Norell
Original paper

Abstract

This paper describes in detail the oxidation of two cast stainless steels in synthetic diesel and gasoline exhaust gases. One alloy was ferritic (Fe18Cr1.4Nb2.1Mn0.32C) and one austenitic (Fe20Cr9Ni1.9Nb2.7W0.47C). Polished sections were exposed, mostly for 50 h, at temperatures between 650 and 1,050 °C. The oxidation product was characterized by means of SEM/EDX, AES, and XRD. Inter-dendritic non-Cr carbides initiated thick oxides. The ferritic steel formed a rather thin and adherent oxide scale at all temperatures. It consisted of (Mn, Cr) oxide on top of Cr2O3 and, starting at 850 °C, a thin silica film at the metal–oxide interface. Chromium depletion triggered dissolution of carbides providing Cr to the oxide. Water vapor did not accelerate the attack since the outer (Mn, Cr) spinel oxide reduced the Cr evaporation. The austenitic grade was very sensitive to water vapor. Chromium segregation directed pitting to the dendrites up to 950 °C whereas uniform catastrophic oxidation occurred at 1,050 °C.

Keywords

High temperature corrosion Gas mixtures Cast stainless steels (Mn, Cr) spinel Cr-evaporation 

Notes

Acknowledgments

This work was done within the Swedish competence center for High Temperature Corrosion. The authors acknowledge Volvo Truck Corporation for financial support and in particular U. Boman for valuable cooperation. Synthetic exhaust gas exposures were done at Volvo Technology Corporation.

References

  1. 1.
    R. N. Durham, B. Gleeson, and D. J. Young, Oxidiation of Metals 50, 139 (1998).CrossRefGoogle Scholar
  2. 2.
    N. Belen, P. Tomaszewicz, and D. J. Young, Oxidation of Metals 22, 227 (1984).CrossRefGoogle Scholar
  3. 3.
    F. Tholence and M. Norell, Materials Science Forum 369–372, 197 (2001).CrossRefGoogle Scholar
  4. 4.
    A. A. Kaya, P. Krauklis, and D. J. Young, Materials Characteristics 49, 11 (2002).CrossRefGoogle Scholar
  5. 5.
    R. Petkovic Luton and T. A. Ramanarayanan, Oxidation of Metals 34, 381 (1990).CrossRefGoogle Scholar
  6. 6.
    D. J. Baxter, R. T. Derricott, and R. C. Hurst, Materials and Corrosion/Werkstoffe und Korrosion 34, 446 (1983).CrossRefGoogle Scholar
  7. 7.
    J. Litz, A. Rahmel, and M. Schorr, Oxidation of Metals 30, 95 (1988).CrossRefGoogle Scholar
  8. 8.
    B. Sundman, B. Jansson, and J. O. Andersson, Calphad 9, 153 (1985).CrossRefGoogle Scholar
  9. 9.
    G. E. Wasielewski and R. A. Rapp, in The Superalloys, High-Temperature Oxidation. (Wiley, New York, 1972), p. 287.Google Scholar
  10. 10.
    H. Asteman, J.-E. Svensson, M. Norell, and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).CrossRefGoogle Scholar
  11. 11.
    J. E. Tang, M. Halvarsson, H. Asteman, and J.-E. Svensson, Micron 32, 799 (2001).CrossRefGoogle Scholar
  12. 12.
    H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster, Oxidation of Metals 14, 235 (1980).CrossRefGoogle Scholar
  13. 13.
    D. P. Whittle and G. C. Wood, Journal of Electrochemical Society 114, 986 (1967).CrossRefGoogle Scholar
  14. 14.
    B. D. Bastow, D. P. Whittle, and G. C. Wood, Oxidation of Metals 12, 413 (1978).CrossRefGoogle Scholar
  15. 15.
    R. Hales, Materials and Corrosion/Werkstoffe und Korrosion 29, 393 (1978).CrossRefGoogle Scholar
  16. 16.
    G. C. Wood, M. G. Hobby, and B. Vaszko, J.I.S.I. 202, 685(1964).Google Scholar
  17. 17.
    P. Kofstad, in High Temperature Corrosion, Chapter 11. (Elsevier Applied Science Publishers Ltd., London, 1988), p. 382.Google Scholar
  18. 18.
    A. Rahmel, in Chem Metall. Iron Steel, Proceedings of the International Symposium of Metallurgy Chemical—Applied Ferrous Metallugy. (Iron Steel Inst., London, UK, 1971), p. 395.Google Scholar
  19. 19.
    C. S. Tedmon, Journal of Electrochemical Society 113, 766 (1966).CrossRefGoogle Scholar
  20. 20.
    C. A. Stearns, F. J. Kohl, and G. C. Fryburg, Journal of Electrochemical Society 121, 945 (1974).CrossRefGoogle Scholar
  21. 21.
    H. C. Graham and H. H. Davis, Journal of American Ceramic Society 54, 89 (1971).CrossRefGoogle Scholar
  22. 22.
    A. L. Marasco and D. J. Young, Oxidation of Metals 36, 157 (1991).CrossRefGoogle Scholar
  23. 23.
    D. Caplan, P. E. Beaubien, and M. Cohen, Transactions of Metal Society AIME 233, 766 (1965).Google Scholar
  24. 24.
    F. H. Stott, F. I. Wei, and C. A. Enahoro, Materials and Corrosion/Werkstoffe und Korrosion 40, 198 (1989).CrossRefGoogle Scholar
  25. 25.
    R. K. Wild, Corrosion Science 17, 87 (1977)CrossRefGoogle Scholar
  26. 26.
    R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke, Oxidation of Metals 37, 81 (1992).CrossRefGoogle Scholar
  27. 27.
    I. Barin, in Thermochemical Data of Pure Substances. (VCH Verschlagsgesellschaft mbH, Weinheim, 1993).Google Scholar
  28. 28.
    D. H. Speidel and A. Muan, Jorunal of American Ceramic Society 46, 577 (1963).CrossRefGoogle Scholar
  29. 29.
    P. R. S. Jackson and G. R. Wallwork, Oxidation of Metals 20, 1 (1983).CrossRefGoogle Scholar
  30. 30.
    S. Chevalier, G. Bonnet, P. Fielitz, G. Strehl, S. Weber, G. Borchardt, J. C. Colson, and J. P. Larpin, Materials at High Temperatures 17, 247 (2000).Google Scholar
  31. 31.
    F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel, and S. Perrier, Materials Characteristics 49, 55 (2002).CrossRefGoogle Scholar
  32. 32.
    J. M. Francis and W. H. Whitlow, J.I.S.I. 203, 468 (1965).Google Scholar
  33. 33.
    A. Atkinson and J. W. Gardner, Corrosion Science 21, 49 (1981).CrossRefGoogle Scholar
  34. 34.
    D. L. Douglass and J. S. Armijo, Oxidation of Metals 2, 207 (1970).CrossRefGoogle Scholar
  35. 35.
    G. C. Wood, J. A. Richardson, M. G. Hobby, and J. Bousted, Corrosion Science 9, 659 (1969).CrossRefGoogle Scholar
  36. 36.
    I. Svedung and N.-G. Vannerberg, Corrosion Science 14, 391 (1974).CrossRefGoogle Scholar
  37. 37.
    J. W. Evans and S. K. Chatterji, Journal of Electrochemical Society 106, 860 (1959).CrossRefGoogle Scholar
  38. 38.
    F. H. Stott, Materials Science Technology 5, 734 (1989).Google Scholar
  39. 39.
    F. H. Stott, G. J. Gabriel, F. I. Wei, and G. C. Wood, Materials and Corrosion/Werkstoffe und Korrosion 38, 521 (1987).CrossRefGoogle Scholar
  40. 40.
    F. H. Stott, Materials Science Technology 4, 431 (1988).Google Scholar
  41. 41.
    P. R. S. Jackson and G. R. Wallwork, Oxidation of Metals 21, 135 (1984).CrossRefGoogle Scholar
  42. 42.
    R. T. Foley, Journal of Electrochemical Society 109, 278 (1962).CrossRefGoogle Scholar
  43. 43.
    D. Caplan and M. Cohen, Transactions of American Institute of Minerals Metallurgy and Engineering 194, 1057 (1952).Google Scholar
  44. 44.
    D. Caplan, A. Harvey, and M. Cohen, Corrosion Science 3, 161 (1963).CrossRefGoogle Scholar
  45. 45.
    D. Caplan and M. Cohen, Journal of Electrochemical Society 112, 471 (1965).CrossRefGoogle Scholar
  46. 46.
    C. S. Tedmon, Journal of Electrochemical Society 114, 788 (1967).CrossRefGoogle Scholar
  47. 47.
    P. J. Ennis, W. J. Quadakkers, and H. Schuster, Materials Science and Technology 8, 78 (1992).Google Scholar
  48. 48.
    R. A. Perkins, in Behaviour of High Temperature Alloys in Aggressive Environments, Proceedings of the Petten International Conference. (Petten, NL, The Metals Society, London, 1979), p. 617.Google Scholar
  49. 49.
    O. Van der Biest, J. M. Harrison, and J. F. Norton, in Behaviour of High Temperature Alloys in Aggressive Environments, Proceedings of the Petten International Conference. (Petten, NL, The Metals Society, London, 1979), p. 681.Google Scholar
  50. 50.
    C. Gindorf, L. Singheiser, and K. Hilpert, Steel Research 72, 528 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials and Manufacturing TechnologyChalmers University of TechnologyGöteborgSweden
  2. 2.ABB ABCorporate ResearchVästeråsSweden

Personalised recommendations