Oxidation of Metals

, Volume 68, Issue 5–6, pp 253–269 | Cite as

In-situ Impedence Spectroscopy Study of Electrical Conductivity and Ionic Transport in Thermally Grown Oxide Scales on a Commercial FeCrAl Alloy

  • J. Öijerholm
  • J. Pan
  • Q. Lu
  • C. Leygraf
Original Paper


In-situ impedance-spectroscopy measurements were performed at temperatures between 600 and 1,000 °C to investigate ionic transport in oxide scales formed on Kanthal AF alloy. The samples were pre-oxidized at 800, 900 and 1,000 °C in air. The impedance spectra of the oxide formed at 1,000 °C exhibited essentially one semicircle, whereas samples oxidized at lower temperatures showed an additional semicircle at high frequencies suggesting a more heterogeneous oxide. The ionic-transference number, derived by measuring the voltage across the oxide scale, indicates that the oxide is a predominant electronic conductor. Ionic diffusivity in the oxide scales formed at different pre-oxidizing temperatures was calculated, using the ionic-transference number. The ionic diffusivities obtained in this way are in reasonable agreement with literature data acquired by other methods. The oxide-formation temperature has a significant influence on the conductivity and ionic-transport properties of the oxide scale.


Alumina scale FeCrAl alloy Impedance spectroscopy Conductivity Ionic diffusivity 



Kanthal AB and The Swedish Competence Centre for High Temperature Corrosion are greatly acknowledged for the financial support to this work.


  1. 1.
    D. A. Jones, Principles and Prevention of Corrosion (Prentice-Hall, Inc., 1996).Google Scholar
  2. 2.
    C. H. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry (Wiley-VCH, 1998).Google Scholar
  3. 3.
    E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment and Application (John Wiley & Sons. Inc., Hoboken, 2005).Google Scholar
  4. 4.
    J. J. Vermoyal, L. Dessemond, A. Hammou, and A. Frichet, Journal of Nuclear Materials 298(3), 297 (2001).CrossRefGoogle Scholar
  5. 5.
    J. Pan, C. Leygraf, and B. Jönsson, Presented at the 15th International Corrosion Congress, Granada, Spain, 2002.Google Scholar
  6. 6.
    S.-H. Song, P. Xiao, and L.-Q. Weng, Journal of the European Ceramic Society 25(7), 1167 (2005).CrossRefGoogle Scholar
  7. 7.
    R. R. Dils and P. S. Follansbee, Journal of the Electrochemical Society 121(3), 104C (1974).Google Scholar
  8. 8.
    G. Ben Abderrazik, F. Millot, G. Moulin, and A. M. Huntz, Journal of the American Ceramic Society 68(6), 302 (1985).CrossRefGoogle Scholar
  9. 9.
    G. Ben Abderrazik, F. Minot, G. Moulin, and A. M. Huntz, Journal of the American Ceramic Society 68(6), 307 (1985).CrossRefGoogle Scholar
  10. 10.
    G. Ben Abderrazik, G. Moulin, A. M. Huntz, E. W. A. Young, and J. H. W. de Wit, Solid State Ionics 22(4), 285 (1987).CrossRefGoogle Scholar
  11. 11.
    D. Nicolas-chaubet, A. M. Huntz, and F. Millot, Journal of Materials Science 26(22), 6113 (1991).CrossRefGoogle Scholar
  12. 12.
    D. Nicolas-Chaubet, A. M. Huntz, and F. Millot, Journal of Materials Science 26(22), 6119 (1991).CrossRefGoogle Scholar
  13. 13.
    J. Balmain and A. M. Huntz, Oxidation of Metals 46(3–4), 213 (1996).CrossRefGoogle Scholar
  14. 14.
    J. Balmain and A. M. Huntz, Oxidation of Metals 45(1–2), 183 (1996).CrossRefGoogle Scholar
  15. 15.
    P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, Oslo, 1988).Google Scholar
  16. 16.
    C. Mennicke, E. Schumann, M. Ruhle, R. J. Hussey, G. I. Sproule, and M. J. Graham, Oxidation of Metals 49(5–6), 455 (1998).CrossRefGoogle Scholar
  17. 17.
    L. Marechal, B. Lesage, A. M. Huntz, and R. Molins, Oxidation of Metals 60(1–2), 1 (2003).CrossRefGoogle Scholar
  18. 18.
    J. A. Nychka and D. R. Clarke, Oxidation of Metals 63(5/6), 325 (2005).CrossRefGoogle Scholar
  19. 19.
    H. Josefsson, Licentiate Thesis, Chalmers, 2005.Google Scholar
  20. 20.
    P. Y. Hou, Journal of the American Ceramic Society 86(4), 660 (2003).CrossRefGoogle Scholar
  21. 21.
    J. Engkvist, U. Bexell, T. M. Grehk, and M. Olsson, Applied Surface Science 231–232, 850 (2004).CrossRefGoogle Scholar
  22. 22.
    F. Liu, H. Josefsson, J.-E. Svensson, L.-G. Johansson, and M. Halvarsson, Materials at High Temperatures 22(3–4), 521 (2005).CrossRefGoogle Scholar
  23. 23.
    R. Cueff, H. Buscail, E. Caudron, C. Issartel, and F. Riffard, Applied Surface Science 207(1–4), 246 (2003).CrossRefGoogle Scholar
  24. 24.
    J. Öijerholm, J. Pan, and C. Leygraf, Corrosion Science 48, 243 (2006).CrossRefGoogle Scholar
  25. 25.
    T. Jacobsen, B. Zachau-Christiansen, L. Bay, and S. Skaarup, Presented at the High Temperature Electrochemistry: Ceramics and Metals. Proceedings of the 17th Riso International Symposium on Materials Science, 2–6 Sept. 1996, Roskilde, Denmark, 1996 Riso Nat. Lab, 29.Google Scholar
  26. 26.
    C. H. Hsu and F. Mansfeld, Corrosion 57(9), 747 (2001).CrossRefGoogle Scholar
  27. 27.
    T. Norby and P. Kofstad, High Temperatures - High Pressures 20(3), 345 (1988).Google Scholar
  28. 28.
    J. Fleig and J. Maier, Solid State Ionics 85(1–4), 17 (1996).CrossRefGoogle Scholar
  29. 29.
    J.-H. Hwang, K. S. Kirkpatrick, T. O. Mason, and E. J. Garboczi, Solid State Ionics 98(1–2), 93 (1997).CrossRefGoogle Scholar
  30. 30.
    W. W. Ho, Presented at the Microwave Processing of Materials, Reno, Nevada, U.S.A., Materials Research Society 124, 137 (1988).Google Scholar
  31. 31.
    J.-K. Chang, C.-M. Lin, C.-M. Liao, C.-H. Chen, and W.-T. Tsai, Journal of the Electrochemical Society 151(3), 188 (2004).CrossRefGoogle Scholar
  32. 32.
    R. Vali and S. M. Hosseini, Computational Materials Science 29(2), 138 (2004).CrossRefGoogle Scholar
  33. 33.
    J. S. Sheasby and D. B. Jory, Oxidation of Metals 12(6), 527 (1978).CrossRefGoogle Scholar
  34. 34.
    R. J. D. Tilley, Defect Crystal Chemistry (Blackie and Son Ltd., London, 1987).Google Scholar
  35. 35.
    R. H. French, Journal of the American Ceramic Society 73(3), 477 (1990).CrossRefGoogle Scholar
  36. 36.
    R. H. French, D. J. Jones, and S. Loughin, Journal of the American Ceramic Society 77(2), 412 (1994).CrossRefGoogle Scholar
  37. 37.
    F. A. Kröger, Solid State Ionics 12, 189 (1984).CrossRefGoogle Scholar
  38. 38.
    J. H. Harding, K. J. W. Atkinson, and R. W. Grimes, Journal of the American Ceramic Society International Workshop on the Science and Technology of Alumina, March 2002 86(4), 554 (2003).Google Scholar
  39. 39.
    P. Y. Hou, X. F. Zhang, and R. M. Cannon, Scripta Materialia 50(1), 45 (2004).CrossRefGoogle Scholar
  40. 40.
    H. Josefsson, F. Liu, J.-E. Svensson, M. Halvarsson, and L.-G. Johansson, Materials and Corrosion 56(11), 801 (2005).CrossRefGoogle Scholar
  41. 41.
    G. Berthome, E. N’Dah, Y. Wouters, and A. Galerie, Materials and Corrosion 56(6), 389 (2005).CrossRefGoogle Scholar
  42. 42.
    F. G. Will, H. G. deLorenzi, and K. H. Janora, Journal of the American Ceramic Society 75(2), 295 (1992).CrossRefGoogle Scholar
  43. 43.
    W. J. Quadakkers, A. Elschner, W. Speier, and H. Nickel, Applied Surface Science 52(4), 271 (1991).CrossRefGoogle Scholar
  44. 44.
    D. Clemens, K. Bongartz, W. J. Quadakkers, H. Nickel, H. Holzbrecher, and J. S. Becker, Fresenius’ Journal of Analytical Chemistry 353(3–4), 267 (1995).CrossRefGoogle Scholar
  45. 45.
    K. Messaoudi, A. M. Huntz, and B. Lesage, Materials Science and Engineering A 247(1–272), 248 (1998).CrossRefGoogle Scholar
  46. 46.
    M. J. Bennett, R. Newton, J. R. Nicholls, H. A1-Badairy, and G. J. Tatlock, Materials Science Forum 461–464(I), 463 (2004).CrossRefGoogle Scholar
  47. 47.
    B. A. Pint, J. R. Martin, and L. W. Hobbs, Solid State Ionics 78(1–2), 99 (1995).CrossRefGoogle Scholar
  48. 48.
    A. Czyrska-Filemonowicz, K. Szot, A. Wasilkowska, A. Gil, and W. J. Quadakkers, Solid State Ionics 117(1–2), 13 (1999).CrossRefGoogle Scholar
  49. 49.
    C. Badini and F. Laurella, Surface and Coatings Technology 135(2–3), 291 (2001).CrossRefGoogle Scholar
  50. 50.
    J. R. Nicholls, M. J. Bennett, and R. Newton, Materials at High Temperatures 20(3), 429 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Division of Corrosion Science, Department of Chemistry and EngineeringRoyal Institute of TechnologyStockholmSweden
  2. 2.Kanthal ABHallstahammarSweden
  3. 3.Division of Corrosion Science, Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden

Personalised recommendations