Oxidation of Metals

, Volume 68, Issue 5–6, pp 211–222 | Cite as

Oxidation of Cr2AlC Between 900 and 1200 °C in Air

  • D. B. Lee
  • S. W. Park
Original Paper


High-purity, dense Cr2AlC compounds were synthesized by hot pressing a mixture of CrC X (x = 0.5) and Al powders. Oxidation at temperatures between 900 and 1200 °C in air for up to 480 h resulted in the formation of a thin Al2O3 layer. The consumption of Al to make the Al2O3 layer led to the enrichment of Cr immediately below the Al2O3 layer, resulting in the formation of an underlying Cr7C3 layer. At the same time, carbon escaped from the Cr2AlC into the air. During the initial stage of oxidation, oxygen diffused inward to form the Al2O3 layer, which vastly improved the oxidation resistance of Cr2AlC from the initial stage of oxidation.


Chromium Aluminum Carbon Carbide Oxidation 



This work was supported by a grant (no. R-11-2000-086-0000-0) from the Center of Excellency Program of the KOSEF, and by a grant (no. 05K1501-00610) from “Center for NanoStructured Materials Technology” under: 21st Century Frontier R&D Program” of the MOST, Korea.


  1. 1.
    W. Tian, P. Wang, G. Zhang, Y. Kan, Y. Li, and D. Yan, Scripta Materialia 54, 841 (2006).CrossRefGoogle Scholar
  2. 2.
    Z. Lin, Y. Zhou, M. Li, and J. Wang, Zeitschrift fur MetaIlkunde 96, 291 (2005).Google Scholar
  3. 3.
    Z. Lin, M. Zhou, Y. Zhou, M. Li, and J. Wang, Journal of Applied Physics 99, 076109 (2006).CrossRefGoogle Scholar
  4. 4.
    J. Y. Wang, Y. C. Zhou, Z. J. Lin, F. L. Meng, and F. Li, Applied Physics Letters 86, 101902 (2005).CrossRefGoogle Scholar
  5. 5.
    W. Jeitschko, R. Poettgen, and R. D. Hoffmann, in Handbook of Ceramic Hard Materials, R. Riedel, ed. (Wiley-VCH, Germany, 2000), p. 18.Google Scholar
  6. 6.
    G. Berg, C. Friedrich, E. Broszeit, and C. Berger, in Handbook of Ceramic Hard Materials, R. Riedel, ed. (Wiley-VCH, Germany, 2000), p. 968.Google Scholar
  7. 7.
    J. M. Schneider, Z. Sun, R. Mertens, F. Uestel, and R. Ahuja, Solid State Communications 130, 445 (2004).CrossRefGoogle Scholar
  8. 8.
    I. Barin, Thermochemical Data of Pure Substances. (VCH, Germany, 1989), p. 48.Google Scholar
  9. 9.
    T. M. Besmann, N. S. Kulkarni, and K. E. Spear, Journal of the American Ceramic Society 89, 638 (2006).CrossRefGoogle Scholar
  10. 10.
    N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High-Temperature of Metals, 2nd edn. (Cambridge University Press, England, 2006), p.124.Google Scholar
  11. 11.
    M. W. Barsoum, T. El-Raghy, and L. U. J. T. Ogbuji, Journal of the Electrochemical Society 144, 2508 (1997).CrossRefGoogle Scholar
  12. 12.
    X. H. Wang, and Y. C. Zhou, Corrosion Science 45, 891 (2003).CrossRefGoogle Scholar
  13. 13.
    R. Prescott, and M. J. Graham, Oxidation of Metals 38, 233 (1992).CrossRefGoogle Scholar
  14. 14.
    H. M. Hindam, and W. W. Smeltzer, Journal of the Electrochemical Society 127, 1630 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Center for Advanced Plasma Surface TechnologySungkyunkwan University SuwonSouth Korea
  2. 2.Multifunctional Ceramic Research CenterKIST SeoulSouth Korea

Personalised recommendations