Advertisement

Oxidation of Metals

, Volume 68, Issue 3–4, pp 149–163 | Cite as

Oxidation Behavior of a Cast Polycrystalline Ni-Base Superalloy in Air: At 900 and 1000 °C

  • H. Wei
  • G. C. Hou
  • X. F. Sun
  • H. R. Guan
  • Z. Q. Hu
Original Paper

Abstract

The oxidation behavior of a cast polycrystalline Ni-base superalloy was studied at 900 and 1000 °C and analyzed by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and SEM. The results indicate that the cast Ni-base superalloy exhibits subparabolic oxidation kinetics, which are controlled by the growth of the inner Al-rich layer. A mixed scale forms on the alloy after prolonged oxidation. The oxide scale formed on the γ matrix is composed of an outer layer of spinel and a uniform inner, compact Al-rich layer. The oxidation behavior on the region overlying MC carbide precipitates is slightly different from that in the γ matrix. The difference is explained by the big difference in composition between MC carbide and γ matrix.

Keywords

Cast polycrystalline Ni-base superalloy Oxidation Kinetics Microstructure 

Notes

Acknowledgements

Financial support of the National Sciences Foundation of China (Grant No. 50501024) is gratefully acknowledged. The authors are indebted to Drs. J. X. Yang and L. N. Wang for experimental assistance.

References

  1. 1.
    E. W. Ross and C. T. Sims, Superalloy II (John Wiley & Sons, New York, 1987), p. 97.Google Scholar
  2. 2.
    R. N. Mahapatra, S. K. Varma, C. Lei, and V. V. Agarwala, Oxidation of Metals 62, 93 (2004).CrossRefGoogle Scholar
  3. 3.
    N. Vialas and D. Monceau, Oxidation of Metals 66, 155 (2006).CrossRefGoogle Scholar
  4. 4.
    H. E. Collins and R. J. Quigg, Transactions of the ASM 61, 139 (1968).Google Scholar
  5. 5.
    G.H. Meier, Materials Science & Engineering A120, 1 (1989).CrossRefGoogle Scholar
  6. 6.
    N. Hussain, K. A. Shahid, I. H. Khan, and S. Rahman, Oxidation of Metals 43, 363 (1995).CrossRefGoogle Scholar
  7. 7.
    F. V. Ver Snyder, R. B. Barlow, B. J. Piearcey, and L. W. Sink, AFS Transactions 77, 10 (1969).Google Scholar
  8. 8.
    Y. Itoh, M. Saitoh and Y. Ishiwata, Journal of Materials Science 34, 3957 (1999).CrossRefGoogle Scholar
  9. 9.
    N. R. Lindblad, Oxidation of Metals 1, 143 (1969).CrossRefGoogle Scholar
  10. 10.
    K. M. N. Prasanna, A. S. Khanna, R. Chandra, and W. J. Quadakkers, Oxidation of Metals 46, 465 (1996).CrossRefGoogle Scholar
  11. 11.
    G. F. Chen and H. Y. Lou, Materials Letters 45, 286 (2000).CrossRefGoogle Scholar
  12. 12.
    D. Legzdina, I. M. Robertson, and H. K. Birnbaum, Acta Materialia 53, 601 (2005).CrossRefGoogle Scholar
  13. 13.
    T. J. Nijdam, L. P. H. Jeurgens, and W. G. Sloof, Acta Materialia 51, 5295 (2003).CrossRefGoogle Scholar
  14. 14.
    D. F. Susan and A. R. Marder, Oxidation of Metals 37, 131 (2002).CrossRefGoogle Scholar
  15. 15.
    S. W. Yang, Oxidation of Metals 15, 375 (1981).CrossRefGoogle Scholar
  16. 16.
    R. Sivakumar, Oxidation of Metals 17, 27 (1982).CrossRefGoogle Scholar
  17. 17.
    R. Molins, I. Rouzou and P. Hou, Oxidation of Metals 65, 263 (2006).CrossRefGoogle Scholar
  18. 18.
    L. Huang, X. F. Sun, H. R. Guan, and Z. Q. Hu, Oxidation of Metals 65, 207 (2006).CrossRefGoogle Scholar
  19. 19.
    F. A. Khalid and S. E. Benjamin, Oxidation of Metals 54, 6 (2000).CrossRefGoogle Scholar
  20. 20.
    K. Godlewski and E. Godlewska, Oxidation of Metals 26, 125 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • H. Wei
    • 1
  • G. C. Hou
    • 1
  • X. F. Sun
    • 1
  • H. R. Guan
    • 1
  • Z. Q. Hu
    • 1
  1. 1.Superalloy Division, Institute of Metal ResearchChinese Academy of SciencesShenyangP.R. China

Personalised recommendations