Oxidation of Metals

, Volume 67, Issue 3–4, pp 179–192 | Cite as

The oxidation behavior of Cu–Zr–Ti–base bulk metallic glasses in air at 350–500 °C

  • H. H. Hsieh
  • W. Kai
  • W. L. Jang
  • R. T. Huang
  • P. Y. Lee
  • W. H. Wang
Original Paper


The oxidation behavior of two Cu-base bulk metallic glasses (BMGs), having compositions Cu–30Zr–10Ti and Cu–20Zr–10Ti–10Hf (in at.%), was studied over the temperature range of 350–500 °C in dry air. In general, the oxidation kinetics of both BMGs followed the parabolic rate law, with the oxidation rates increasing with increasing temperature. The addition of Hf slightly reduced the oxidation rates at 350–400 °C, while the opposite results observed at higher temperatures. It was found that the oxidation rates of both BMGs were significantly higher than those of polycrystalline pure-Cu. The scales formed on both BMG alloys were strongly composition dependent, consisting of mostly CuO/Cu2O and minor amounts of cubic-ZrO2 and ZrTiO4 for the ternary BMG, and of CuO, cubic-ZrO2, and Zr5Ti7O24 for the quaternary BMG. The formation of ternary oxides (ZrTiO4 and Zr5Ti7O24) was inferred to be responsible for the fast oxidation rates of the BMGs.


Bulk metallic alloys CuO Cu2ZrO2 ZrTiO4 Zr5Ti7O24 



This work supported by the National Science Council of Republic of China under the Grant Nos. NSC 92–2216-E-019–005 and NSC 94–2218-E-110–009 was greatly acknowledged.


  1. 1.
    A. Inoue, and T. Zhang, Materials Transactions JIM 37, 185 (1996).Google Scholar
  2. 2.
    A. Inoue, N. Nishiyama, and H. M. Kimura, Materials Transactions JIM 38, 189 (1997).Google Scholar
  3. 3.
    H. M. Kimura, K. Asami, A. Inoue, and T. Masumoto, Corr. Sci. 35, 309 (1993).CrossRefGoogle Scholar
  4. 4.
    R. Ray, B. Giessen, and N. Grant, Scripta Materialia 2, 359 (1968).Google Scholar
  5. 5.
    A. Inoue, C. Suruyanarayana, and T. Masumoto, Journal of Materials Science 16, 1391 (1981).CrossRefGoogle Scholar
  6. 6.
    T. Zhang, T. Yamamoto, and A. Inoue, Materials Transactions JIM 43, 3222 (2002).CrossRefGoogle Scholar
  7. 7.
    A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Journal of Non-Crystalline Solids 304, 200 (2002).CrossRefGoogle Scholar
  8. 8.
    D. V. Louzguine, and A. Inoue, Journal of Materials Research 17, 2112 (2002).Google Scholar
  9. 9.
    A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Acta Materialia 49, 2645 (2001).CrossRefGoogle Scholar
  10. 10.
    C. Li, J. Saida, M. Kiminami, and A. Inoue, Journal of Non-Crystalline Solids 261, 108 (2000).CrossRefGoogle Scholar
  11. 11.
    A. Inoue, T. Zhang, and T. Masumoto, Materials Transactions JIM 31,177 (1990).Google Scholar
  12. 12.
    I. K. Leng, P. Y. Lee, J. S. Chen, R. R. Jeng, C. H. Yeh, and C. K. Lin, Intermetallics 10, 1271 (2002).CrossRefGoogle Scholar
  13. 13.
    W. Kai, H. H. Hsieh, T. G. Nieh, and Y. Kawamura, Intermetallics 10, 1265 (2002).CrossRefGoogle Scholar
  14. 14.
    H. H. Hsieh, W. Kai, R. T. Huang, M. X. Pan, and T. G. Nieh, Intermetallics 12, 1089 (2004).Google Scholar
  15. 15.
    M. Takiguchi, S. Ishii, E. Makino, and A. Okabe, Journal of Applied Physics 87, 2469 (2000).CrossRefGoogle Scholar
  16. 16.
    H. C. Huang, J. S. Yu, and W. Kai, High-temperature Oxidation Behavior of Ti-Cu Based Equi-molar Alloys, Mater Thesis, 2005.Google Scholar
  17. 17.
    D. L. Douglass, The Metallurgy of Zirconium, Internet. (Atomic Energy Agency, Vienna, 1971).Google Scholar
  18. 18.
    F. F. Lange, Journal of Materials Science 17 240–246 (1982).CrossRefGoogle Scholar
  19. 19.
    P. Kofstad, High Temperature Corrosion (Elsevier Applied Sci, London, 1988).Google Scholar
  20. 20.
    Y. Zhu, K. Mimura, and M. Isshiki, Oxidation of Metals 62(3/4), 207 (2004).Google Scholar
  21. 21.
    Y. Zhu, K. Mimura, and M. Isshiki, Materials Transactions JIM 11, 2173 (2002).CrossRefGoogle Scholar
  22. 22.
    P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Robert E. Krieger Publishing Company, Florida, USA, 1983).Google Scholar
  23. 23.
    I. Barin, Thermochemical Data for Pure Substance, 3rd edn. (American Chemical Society and American Institute of Physics for National Bureau of Standards, 1995).Google Scholar
  24. 24.
    F. R. de Beor, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals (North-Holland, Amsterdam, The Netherlands, 1988).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • H. H. Hsieh
    • 1
  • W. Kai
    • 1
  • W. L. Jang
    • 1
  • R. T. Huang
    • 1
  • P. Y. Lee
    • 1
  • W. H. Wang
    • 2
  1. 1.Institute of Materials EngineeringNational Taiwan Ocean UniversityKeelungTaiwan, Republic of China
  2. 2.Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations