Oxidation of Metals

, Volume 67, Issue 1–2, pp 107–127 | Cite as

Corrosion of Three Commercial Steels Under ZnCl2 –KCl Deposits in a Reducing Atmosphere Containing HCl and H2S at 400–500°C

  • T. J. Pan
  • C. L. Zeng
  • Y. Niu

The corrosion of three commercial steels in a reducing atmosphere containing HCl plus H2S in the presence of ZnCl2–KCl deposits has been investigated at 400–500°C and compared with the corrosion of the same materials in a similar gas mixture free from H2S. The presence of H2S in the gas accelerated the corrosion of the three commercial steels beneath ZnCl2–KCl deposits. All materials suffered from severe corrosion with partial detachment and spalling of the external scales. Degradation of the steels resulted from the penetration of chlorine-containing species through the scale formed initially down to the metal matrix, because chorine-rich species were detected close to the alloy/scale interface. Although the corrosion resistance generally increased with increasing Cr content, even the high-Cr stainless steel SS304 is still unable to provide good corrosion resistance against the ZnCl2–KCl deposits in the presence of H2S due to the bad adherence of the scales to the alloy. The mechanisms of attack are discussed on the basis of thermodynamic considerations and of the active-oxidation model.


steels chlorides reducing atmosphere corrosion HCl and H2S effects 



Financial support by the National Natural Scientific Foundation of China (NSFC) under the research grant No. 50671114 is gratefully acknowledged.


  1. 1.
    Grabke H. J., Reese E., Spiegel M. (1995) Corrosion Science 37:1023CrossRefGoogle Scholar
  2. 2.
    Zahs A., Spiegel M., Grabke H. J. (2000) Corrosion Science 42:1093CrossRefGoogle Scholar
  3. 3.
    Spiegel M., Grabke H. J. (1995) Werkstoffe und Korrosion 46:121CrossRefGoogle Scholar
  4. 4.
    M. Spiegel, and R. Warnecke, Corrosion. Paper No. 01182 (2001)Google Scholar
  5. 5.
    Krausse H. H., Vaughan D. A., Miller P. D. (1973) Transactions on ASME, Journal of Engineering for Power A95:45Google Scholar
  6. 6.
    Meadowcroft D. B.(1987) Materials Science and Engineering 88:313CrossRefGoogle Scholar
  7. 7.
    Meadowcroft D. B. (1989) Materials Science and Engineering A121:669CrossRefGoogle Scholar
  8. 8.
    Stringer J. (1985) High Temperature Technology 3:119Google Scholar
  9. 9.
    Zhang K., Niu Y., Al-Omary M., Wu W.T. (2004) Oxidation of Metals 62:323CrossRefGoogle Scholar
  10. 10.
    Pan T. J., Niu Y., Al-Omary M., Wu W. T. (2005) High Temperature Materials and Processes 24:193Google Scholar
  11. 11.
    K. Zhang, T. J. Pan, and Y. Niu, High Temperature Materials and Processes submitted for publicationGoogle Scholar
  12. 12.
    Spiegel M. (1999) Materials and Corrosion 50:373CrossRefGoogle Scholar
  13. 13.
    Li Y. S., Niu Y., Wu W. T. (2003) Materials Science and Engineering A345:64Google Scholar
  14. 14.
    McNallan M. J., Liang W. W., Oh J. M., Kang C. T. (1982) Oxidation of Metals 17:371CrossRefGoogle Scholar
  15. 15.
    Takemura M., McNallan M. J. (1995) Corrosion/95, Paper No. 568. NACE Inter,HoustonTXGoogle Scholar
  16. 16.
    Li Y. S., Al-Omary M., Niu Y., Zhang K. (2002) High Temperature Materials and Processes 21:12Google Scholar
  17. 17.
    Ishitsuka T. Nose K. (2000) Materials and Corrosion 51:177CrossRefGoogle Scholar
  18. 18.
    Shinata Y., Takahashi F., Hashiura K. (1987) Materials Science and Engineering A87:399CrossRefGoogle Scholar
  19. 19.
    D. Berztiss, A. Zahs, A. Schneider, M. Spiegel, H. Viefhaus, and H. J. Grabke, Zeitschrift fur Metallkunde (1999) 90:4Google Scholar
  20. 20.
    Tu J. P. (1997) Corrosion 53:365CrossRefGoogle Scholar
  21. 21.
    Zheng X., Rapp R. A. (1997) Oxidation of Metals 48:527CrossRefGoogle Scholar
  22. 22.
    Unsitalo M. A., Vuoristo P. M. J., Mäntylä T. A. (2002) Materials Science and Engineering A322:1CrossRefGoogle Scholar
  23. 23.
    A. A. Verstak and V. E. Baranovski (1999) Corrosion 99, NACE International, Paper No. 74Google Scholar
  24. 24.
    Y. Kawahara and M. Kira (1995) Corrosion 95, NACE International, Paper No. 563Google Scholar
  25. 25.
    Hou P. Y., Prussner K., Fairbrother D. H., Roberts J. G., Alexander K. B. (1999) Scripta Materialia 40:241CrossRefGoogle Scholar
  26. 26.
    Hou P. Y., Zhang X. F., Cannon R. M. (2004) Scripta Materialia 50:45CrossRefGoogle Scholar
  27. 27.
    Haycock E.W. (1959) Journal of the Electrochemical Society 106:764Google Scholar
  28. 28.
    Gesmundo F., Viani F., Znamirowski W., Godlewski K., Bregani F. (1992) Werkstoffe und Korrosion 43:83CrossRefGoogle Scholar
  29. 29.
    Backensto E. B., Drew R. D., Stapleford C. C. (1956) Corrosion 12:22Google Scholar
  30. 30.
    Backensto E. B., Sjoberg J. W. (1959) Corrosion 15:41Google Scholar
  31. 31.
    F. Gesmundo, F. Viani, and G. P. Toledo, Proceedings of 10th European Corrosion Congress. In: J. M. Costa, and A. D. Merricier (eds), Vol. I, The Institute of Materials, London, 1993, pp. 825Google Scholar
  32. 32.
    Sorell G., Hoyt W. B. (1956) Corrosion 12:33Google Scholar
  33. 33.
    Sorell G. (1958) Corrosion 14:33Google Scholar
  34. 34.
    G. P. De Gaudenzi, F. Gesmundo, G.P. Toledo, Stainless Steel 1993 (Firenze, Ottobre 1993), AIM, Milano (1993), 3:93Google Scholar
  35. 35.
    Gesmundo F., Roos C., Oquab D., Viani F. (1998) High Temperature Materials and Processes 17:145Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.State Key Laboratory for Corrosion & ProtectionInstitute of Metal ResearchShenyangChina

Personalised recommendations