Oxidation of Metals

, Volume 66, Issue 3–4, pp 191–207 | Cite as

Oxidation Behavior of Ni-3,6, 10 wt.% Al Alloys at 800°C

  • Shigenari Hayashi
  • Saori Narita
  • Toshio Narita

The oxidation behavior of Ni and Ni-3, 6, and 10Al alloys at 800°C in an N2–O2 gas mixture was investigated. The mass gain of each alloy depended on both the oxidation periods and Al content. NiO scale was formed on all alloy substrates accompanied by internal oxides of Al2O3. Many cavities were formed at the NiO/substrate interface at shorter oxidation times, and these cavities were found to be filled by metallic Ni(Al) from the matrix in the internal-oxidation zone by the development of internal oxides. The filling of cavities by Ni(Al) was more significant on higher Al alloys, which had a higher density of internal Al2O3. Once metallic Ni(Al) formed along the entire NiO/substrate interface, the oxidation kinetics became the same as pure Ni. It was concluded that pure Ni filling the cavities at the interface provided a diffusion path of Ni from the substrate to the NiO scale, and that controlled the oxidation kinetics.


Ni-low Al alloy internal oxidation extrusion of Ni matrix NiO scale 


  1. 1.
    Pettit F. S. (1967) Transactions of the Metallurgical Society of AIME 239:1296Google Scholar
  2. 2.
    Hindam H. M., Smeltzer W. W. (1980) Journal of Electrochemical Society 127:1622CrossRefGoogle Scholar
  3. 3.
    Scott F. H., Wood G. C. (1977) Corrosion Science 17:647CrossRefGoogle Scholar
  4. 4.
    Wolf J., Evans E. B. (1962) Corrosion 18:129Google Scholar
  5. 5.
    Elefaie F. A., Smeltzer W. W. (1982) Oxidation of Metals 17:407CrossRefGoogle Scholar
  6. 6.
    Giggins C. S., Pettit F. S. (1971) Journal of Electrochemical Society 118:1782Google Scholar
  7. 7.
    Goto S., Koda S. (1968) Journal of the Japan Institute of Metals 34:334Google Scholar
  8. 8.
    Hagel W. C. (1965) Corosion 21:316Google Scholar
  9. 9.
    Nesbitt J. A. (1989) Journal of Electrochemical Society 5:1511CrossRefGoogle Scholar
  10. 10.
    Shida Y., Stott F. H., Bastow B. D., Whittle D. P., Wood G. C. (1982) Oxidation of Metals 18:93CrossRefGoogle Scholar
  11. 11.
    Fueki K., Ishibashi H. (1961) Journal of Electrochemical Society 108:306Google Scholar
  12. 12.
    Whittle D. P., et al (1982) Philosophical Magazine A 46:931Google Scholar
  13. 13.
    Martinez-Villafane A., et al (2002) Oxid. Met. 57:267CrossRefGoogle Scholar
  14. 14.
    Mackrt J. R. Jr., Ringle R. D., Fairhurst C. W. (1983) Journal of Dental Research 62:1229Google Scholar
  15. 15.
    Savva G. C., Weatherly G. C., Kirkaldy J. S. (1996) Scripta Materialia 34:1087CrossRefGoogle Scholar
  16. 16.
    Stott F. H., Shida Y., Whittle D. P., Wood G. C., Bastow B. D. (1982) Oxidation of Metals 18:127CrossRefGoogle Scholar
  17. 17.
    Yi H. C., Guan S. W., Smeltzer W. W., Petric A. (1994) Acta Metallurgica et Materialia 42:981CrossRefGoogle Scholar
  18. 18.
    Gesmundo F., Gleeson B. (1995) Oxidation of Metals 44: 211–236CrossRefGoogle Scholar
  19. 19.
    Wang G., Gleeson B., Douglass D. L. (1991) Oxidation of Metals 35:333CrossRefGoogle Scholar
  20. 20.
    Young D., Gleeson B. (2002) Corrosion Science 44:345CrossRefGoogle Scholar
  21. 21.
    Carter P., Gleeson B., Yonug D. J. (1996) Acta Materialia 44:4033CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Shigenari Hayashi
    • 1
  • Saori Narita
    • 1
    • 2
  • Toshio Narita
    • 1
  1. 1.Division of Materials Science, Graduate School of EngineeringHokkaido UniversitySapporoJapan
  2. 2.NGK Spark Plug Co., LtdNagoyaJapan

Personalised recommendations