Oxidation of Metals

, Volume 65, Issue 5–6, pp 391–408 | Cite as

Oxidation Behavior of the Single-Crystal Ni-base Superalloy DD32 in Air at 900, 1000, and 1100°C

  • L. Huang
  • X. F. Sun
  • H. R. Guan
  • Z. Q. Hu


The isothermal-oxidation behavior of the single-crystal Ni-base superalloy DD32 was studied over the temperature range from 900–1100 °C and analyzed by OM, TGA, XRD, EDX, SED, and EPMA. The alloy DD32 obeyed a subparabolic rate law during oxidation at 900 and 1000°C, while the alloy showed a rather high oxidation rate at 1100°C. The severe composition segregation, which resulted from the solidification process, led to the formation of different scale on the dendritic and interdendritic regions. Internal nitride (AlN) was observed in the subsurface zone of dendritic areas, but absent in interdendritic areas. The oxidation mechanism of the alloy DD32 is discussed by comparing with other alloys.


single-crystal Ni-base superalloy DD32 oxidation kinetics microstructure 


  1. 1.
    Levy M., Farrell P., Pettit F. (1986). Corrosion 42:708Google Scholar
  2. 2.
    Levy M., Huie R., Pettit F. (1989). Corrosion 45:661Google Scholar
  3. 3.
    Göbel M., Rahmel A., Schütze M. (1993). Oxidation of Metals 39:231CrossRefGoogle Scholar
  4. 4.
    Göbel M., Rahmel A., Schütze M. (1994). Oxidation of Metals 41:271CrossRefGoogle Scholar
  5. 5.
    Giamei F., Auton D. L. (1985). Metallurgical Transactions A 16(11):1997Google Scholar
  6. 6.
    Giggins C. S., Pettit F. S. (1971). Journal of Electrochemical Society 118:1782Google Scholar
  7. 7.
    Pieraggi B., Dabosi F. (1987). Werkstoffe and Korrosion 38:584CrossRefGoogle Scholar
  8. 8.
    Mrowec S. (1967). Corrosion Science 7:563CrossRefGoogle Scholar
  9. 9.
    Atkinson A., Taylor R. I., Goode P. O. (1979). Oxidation of Metals 13:519CrossRefGoogle Scholar
  10. 10.
    Li M. H., Sun X. F., Li J. G., Zhang Z. Y., Jin T., Guan H. R., Hu Z. Q. (2003). Oxidation of Metals 59:591CrossRefGoogle Scholar
  11. 11.
    Li M. H., Sun X. F., Jin T., Guan H. R., Hu Z. Q. (2003). Oxidation of Metals 60:195CrossRefGoogle Scholar
  12. 12.
    R. M. Kearsey, J. C. Beddoes, K. M. Jaansalu, W. T. Thompson, and P. Au, Superalloy 2004, p.801.Google Scholar
  13. 13.
    E. C. Caldwell, F. J. Fela, and G. E. Fuchs, Superalloy 2004, p.811.Google Scholar
  14. 14.
    Krupp U., Christ H. -J. (2000). Metallurgical Transactions A 31A:47Google Scholar
  15. 15.
    Han S., Young D. J. (2001). Oxidation of Metals 55:223CrossRefGoogle Scholar
  16. 16.
    G . L. Erickson, USP 5366695 (1994), p.11.Google Scholar
  17. 17.
    Litz J., Rahmel A., Schorr M. (1988). Oxidation of Metals 30:95CrossRefGoogle Scholar
  18. 18.
    Huang L., Sun X. F., Guan H. R., Hu Z. Q. (2005). Oxidation of Metals 64:303CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.State Key Laboratory for Corrosion and Protection, Institute of Metal ResearchChinese Academy of SciencesShenyangPR China

Personalised recommendations