Advertisement

Oxidation of Metals

, Volume 65, Issue 3–4, pp 263–283 | Cite as

Chemical and Morphological Evolution of a (NiPt)Al Bondcoat

  • Régine Molins
  • Isabelle Rouzou
  • Peggy Hou
Article

Abstract

Experimental results are reported on the chemical and microstructural evolutions of a (NiPt)Al coating, deposited on a single-crystal, nickel-base superalloy, during isothermal-oxidation tests at 1100°C, up to 50 hr. Analytical STEM studies were carried out, in conjunction with Auger experiments, in order to follow the various changes that occur in the bondcoat (β into γ′ phase transformation, TCP and α-Cr precipitation, S-diffusion pathways) and at the Al2O3/bondcoat interface. Efforts were concentrated on the effect of interfacial sulfur segregation (at both intact interfaces and void surfaces) as a function of the oxidation time and its dependence on phase transformations in the external layer of the bondcoat. An important result concerning the co-segregation of S and Cr at the alumina/bondcoat interface was realized in this system due to Cr diffusion from the substrate into the bondcoat. This S segregation adversely affected Al2O3-bondcoat adhesion where extensive interfacial voids formed at the interface.

Keywords

(NiPt)Al coating oxidation sulfur interface segregation 

Notes

Acknowledgments

The authors thank Snecma, Safran group, for providing samples and supporting the TBC program in Ecole des Mines (France). ARIEL is gratefully acknowledged for providing additional support. Work performed at LBNL was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences under Contracts No. DE-AC03-76SF00098.

References

  1. 1.
    Funkenbusch W., Smeggil J. G., Bornstein N. S., (1985) Metallurgical Transactions 16A: 1164–1166Google Scholar
  2. 2.
    B. Allen, in Elevated Temperature Coatings: Science and Technology I, 3–6 oct 1994, Rosemont (1995) 193–202Google Scholar
  3. 3.
    Smialek J. L., (1991) Metallurgical Transactions A 22: 739–752Google Scholar
  4. 4.
    Haynes J. A., (2001) Scripta Materialia 44:1147–1152CrossRefGoogle Scholar
  5. 5.
    Haynes J. A., Lance M. J., Pint B. A., Wright I. G., (2001) Surface and coatings Technology 146–147:140–146CrossRefGoogle Scholar
  6. 6.
    Hou P. Y., Stringer J., (1992) Oxidation of Metals 38: 323–345CrossRefGoogle Scholar
  7. 7.
    H. Al-Badary, G. Tatlock, and J. Le Coze, in Microscopy of Oxidation 3, J. B. Newcomb and J. A. Little eds. (The Institute of Metals, 1997), pp. 105–114Google Scholar
  8. 8.
    P. Y. Hou, (2000) Journal of Materials Science Letters 19: 577–578CrossRefGoogle Scholar
  9. 9.
    R. Molins, I. Rouzou, R. Rémy, K. Le Biavant-Guerrier and F. Jomard, Study of Sulfur Distribution in a NiPtAl Bondcoat, MOO6 (Birmingham, 2005) (to be published)Google Scholar
  10. 10.
    Grabke H. J., Wagemann B., (1995) Oxidation of Metals 43: 97–114CrossRefGoogle Scholar
  11. 11.
    Rivoaland L., Maurice V., Josso P., Bacos M. P., Marcus P., (2003) Oxidation of Metals 60:137–157CrossRefGoogle Scholar
  12. 12.
    Hou P.Y., Priimak K., (2005) Oxidation of Metals 63:113–130CrossRefGoogle Scholar
  13. 13.
    Hou P., (2001) Materials Science Forum 369–372: 23–28CrossRefGoogle Scholar
  14. 14.
    Grabke H. J., Kurbatov G., Schmultzer H. J., (1991) Oxidation of metals 43: 97–114CrossRefGoogle Scholar
  15. 15.
    Fox P., Lees D. G., Lorimer G. W., (1991) Oxidation of Metals 36: 491–503CrossRefGoogle Scholar
  16. 16.
    Hou P. Y., Prüßner K., Fairbrother D. H., Robert J. G., Alexander K. B., (1999) Scripta Metallurgica 40: 241–247Google Scholar
  17. 17.
    Zhang Y., Lee W. Y., Haynes J. A., Wright I. G., Pint B. A., Cooley K. M., Liaw P. K., (1999) Metallurgical Transactions 30A: 2679–2687Google Scholar
  18. 18.
    Christien F., Pouteau P., Le Gall R., Saindrenan G., Jaslier Y., (2000) Journal de Physique IV P4:173–178Google Scholar
  19. 19.
    Guerre C., Molins R., Rémy L., (2000) Materials at High Temperatures 17(2): 197–204Google Scholar
  20. 20.
    Guerre C., Rémy L., Molins R., (2003) Materials at high Temperature 20(4): 481–485CrossRefGoogle Scholar
  21. 21.
    Robertson I. M., Wayman C. M., (1983) Philosophical magazine A 48(3): 443–467Google Scholar
  22. 22.
    Smialek J. L., (1981) Microstructure of Al2O3 scales formed on nicral alloys, NASA TM 81676 (1981)Google Scholar
  23. 23.
    Hou P. Y., McCarty K. F., (2006) Scripta Metallurgica 54:937–941Google Scholar
  24. 24.
    Smialek J., (1971) Metallurgical Transactions 2: 913–915Google Scholar
  25. 25.
    Zhang Y., Haynes J. A., Pint B. A., Wright I. G., Lee W. Y., (2003) Surface and Coatings Technology 163–164: 19–24CrossRefGoogle Scholar
  26. 26.
    J. A. Haynes, K. L. More, B. A. Pint, I. G. Wright, K. Cooley, and Y. Zhang, Materials Science Forum, 369–372 (Trans Tech Publications, Switzerland, 2001), 679–686Google Scholar
  27. 27.
    Nesbitt J. A., Zhu D., Miller R. A., Barrett C. A., (2003) Materials at High Temperature 20(4): 507–517Google Scholar
  28. 28.
    Oforka N. C., Argent B. B., (1985) Journal of Less-Common Metals 114: 97–109CrossRefGoogle Scholar
  29. 30.
    P.Y. Hou, unpublished resultGoogle Scholar
  30. 29.
    Hou P. Y., (2000) Materials and Corrosion 51: 329–337CrossRefGoogle Scholar
  31. 31.
    Hou P. Y., Ackerman G. D., (2001) Applied Surface Science 178: 156–164CrossRefGoogle Scholar
  32. 32.
    Zhang W., Smith J. R., Wang X.-G., Evans A. G. (2003) Physics Review B 67:245414CrossRefGoogle Scholar
  33. 33.
    Hou P. Y., Van Lienden C., (2003) Materia at High Temperature 20: 357–364Google Scholar
  34. 34.
    Haynes J. A., Pint B. A., More K. L., Zhang Y., Wright I. G., (2002) Oxidation of Metals 58:513–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.ENSMP, Centre des MatériauxUMR-CNRS 7633EvryFrance
  2. 2.Materials Sciences DivisionNational LaboratoryBerkeleyUSA

Personalised recommendations