Oxidation of Metals

, Volume 65, Issue 1–2, pp 123–135 | Cite as

Effect of SI Content on the Oxidation Resistance of Ti3Al1-x Si x C2 (x⩽ 0.25) Solid Solutions at 1000–1400°C in Air



The oxidation behavior of Ti3Al1-x Si x C2 (x ⩽ 0.25) solid solutions was investigated in flowing air at 1000–1400°C for up to 20 hrs. Similar to Ti3AlC2, Ti3Al1-x Si x C2 (x⩽ 0.15) solid solutions display excellent oxidation resistance at all temperatures because of the formation of the continuous α-Al2O3 protective layers. However, Al2(SiO4)O formed during oxidation of Ti3Al1-x Si x C2 (x=0.2 and 0.25) solid solutions at and above 1100°C, which is believed to be responsible for the deterioration of oxidation resistance of Ti3Al0.75Si0.25C2 at 1300°C. Additionally, Ti5Si3 was also found in the oxidized samples. This implies that Ti5Si3 precipitated from Ti3Al1-x Si x C2 solid solutions during oxidation. But it has been proven that Ti5Si3 has little effect on the oxidation resistance of the material, which is attributed to an interstitial carbon effect.


Oxidation resistance Ti3Al1-xSixC2 solid solutions Al2(SiO4)O Ti5Si3



This work was supported by the National Outstanding Young Scientist Foundation for Y. C. Zhou under Grant No. 59925208, Natural Sciences Foundation of China under Grant No. 50232040, No. 50302011, No.90403027, and ‘863’ project.


  1. 1.
    Pietzka M.A., and Schuster J.C. (1994) Journal of Phase Equilibrium 15:392Google Scholar
  2. 2.
    Tzenov N.V., and Barsoum M.W. (2000) Journal of American Ceramics Society 83:825CrossRefGoogle Scholar
  3. 3.
    Wang X.H., and Zhou Y.C. (2002) Acta Materialias 50:3141Google Scholar
  4. 4.
    Low I.M. (1998) Journal of European Ceramics Society 18:709CrossRefGoogle Scholar
  5. 5.
    Wang X.H., and Zhou Y.C. (2003) Corrosion Science 45:891CrossRefGoogle Scholar
  6. 6.
    Y. C. Zhou, J. X. Chen, and J. Y. Wang (2006) Acta Materialia 54:1317CrossRefGoogle Scholar
  7. 7.
    Zhu J.Q., Mei B.C., Xu X.W., and Liu J. (2004) Materials Letters 58:588CrossRefGoogle Scholar
  8. 8.
    Zhou Y.C., Zhang H.B., Liu M.Y., Wang J.Y., and Bao Y.W. (2004) Materials Research Innovation 8:97Google Scholar
  9. 9.
    Zhang H.B., Zhou Y.C., Bao Y.W., and Li M.S. (2004) Acta Materialia 52:3631CrossRefGoogle Scholar
  10. 10.
    Zhou Y.C., Sun Z.M., Chen S.Q., and Zhang Y. (1998) Materials Research Innovation 2:142CrossRefGoogle Scholar
  11. 11.
    Wang X.H., and Zhou Y.C. (2002) Journal of Materials Chemistry 12:455CrossRefGoogle Scholar
  12. 12.
    Jedlinski J., and Mrowec S. (1987) Materials Science and Engineering 87:281CrossRefGoogle Scholar
  13. 13.
    Becker S., Rahmel A., Schorr M., and Schutze M. (1992) Oxidation of Metals 38:425CrossRefGoogle Scholar
  14. 14.
    Y.G. Gogotsi, Porz L.F., and Dransfield G. (1993) Oxidation of Metals 39:69CrossRefGoogle Scholar
  15. 15.
    R. A. Young, The Rietveld Method (Chapter 1), (Oxford University Press, 1993)Google Scholar
  16. 16.
    Thom A.J., Akinc M., Cavin O.B., and Hubbard C.R. (1994) Journal of Materials Science Letters 13:1657CrossRefGoogle Scholar
  17. 17.
    Thom A.J., Young V.G., and Akinc M. (2000) Journal of Alloys Compounds 296:59CrossRefGoogle Scholar
  18. 18.
    Williams J.J., Ye Y.Y., Kramer M.J., Ho K.M., Hong L., Fu C.L., and Malik S.K. (2000) Intermetallics 8:937CrossRefGoogle Scholar
  19. 19.
    Williams J.J., and Akinc M. (2002) Oxidation Metals 58:57CrossRefGoogle Scholar
  20. 20.
    Sun Z.M., Zhou Y.C., and Li M.S. (2001) Corrosion Science 43:1095CrossRefGoogle Scholar
  21. 21.
    Sun Z.M., Zhou Y.C., and Li M.S. (2001) Acta Materialia 49:4347CrossRefGoogle Scholar
  22. 22.
    Barsoum M.W., El-Raghy T., and Ogbuji LUJT (1997) Journal of Electrochemical Society 144:2508CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.High-Performance Ceramic DivisionShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of SciencesShenyangChina

Personalised recommendations