Oxidation of Metals

, Volume 65, Issue 1–2, pp 101–122 | Cite as

Effects of Silicon on the Oxidation Behavior of Ni-Base Chromia-Forming Alloys

  • B. Li
  • B. Gleeson


This paper compares and analyzes the oxidation behavior of Ni-base alloys with and without about 2.7 wt.% Si addition. The Ni-base alloys studied were of two types: cast model alloys or wrought commercial alloys. Oxidation testing was conducted at 1000°C in still air. The specific aspects studied were scale spallation resistance, nature by which the silicon oxidized, and the influence of silicon on the subsurface depletion behavior of chromium. From oxidation results of the cast model alloys, Si addition was found to improve oxidation resistance by forming a continuous SiO2 layer at the alloy/scale interface, which resulted in decreased oxidation kinetics. The cast alloys with Si addition also showed larger average effective interdiffusion coefficients of chromium compared to the cast alloys without Si addition. As a consequence, the Si addition assisted in the establishment and re-formation of a chromia scale during oxidation. In the case of the wrought commercial alloys, a discontinuous distribution of SiO2 precipitates in the vicinity of the alloy/scale interface was found to be beneficial to cyclic oxidation resistance.


high temperature oxidation silicon effect chromia-former Ni-base alloy chromium depletion and interdiffusion behavior 


  1. 1.
    J. L. Smialek and G. H. Meier, in Superalloys II, Chapter 11, C. T. Sims, N. S. Stoloff, and W. C. Hagel, eds. (High-Temperature Oxidation, John Wiley & Sons, New York, 1987), p. 293Google Scholar
  2. 2.
    J. L. Smialek, C. A. Barrett, and J. C. Schaeffer, in ASM Handbook on Materials Selection and Design, Vol. 20, (Materials Park, OH,1997), p. 589Google Scholar
  3. 3.
    Nicholls J.R., Bennett M.J. (2000). Materials at High Temperature 17(3):413CrossRefGoogle Scholar
  4. 4.
    Giggins C.S., Pettit F.S. (1969). Transaction TMS AIME 245:2495Google Scholar
  5. 5.
    M. Schutze, Protective Oxide Scales and Their Breakdown, (John Eiley & Son Ltd., 1997)Google Scholar
  6. 6.
    C. A. Barrett, A Statistical Analysis of Elevated Temperature Gravimetric Cyclic Oxidation Data of Ni- and Co-Base Superalloys Based on and Oxidation Attack Parameter, TM-105934, (NASA Lewis Research Center, June 1987)Google Scholar
  7. 7.
    R.C. John, Corrosion 1996, Paper 171, (NACE, Houston, 1996)Google Scholar
  8. 8.
    Gleeson B., Harper M.A. (1998). Oxidation of Metals 49:373CrossRefGoogle Scholar
  9. 9.
    M. A. Harper, J. E. Barnes, and G. Y. Lai, Corrosion 1997, paper 132, (NACE, Houston, TX, 1997)Google Scholar
  10. 10.
    Bricknell R.H., Mulford R.A., Woodford D.A. (1982). Metallurgical Transaction. A 13A:1223Google Scholar
  11. 11.
    Evans E., Hilton D.A., Holm R.A., Webster S.J. (1983). Oxidation of Metals 19:1CrossRefGoogle Scholar
  12. 12.
    Stott F.H., Gabriel G.J., Wei F.I., Wood G.C. (1987). Werkst Corrsion. 38:521CrossRefGoogle Scholar
  13. 13.
    Caplan D., Cohen M. (1965) Journal of Electrochemical Society 112:471Google Scholar
  14. 14.
    Jones D.E., Stringer J. (1975). Oxidation Metals 9:409CrossRefGoogle Scholar
  15. 15.
    Evans H.E. (1995). International Materials Review 40:1Google Scholar
  16. 16.
    Douglass D.L., Armijo J.S. (1970). Oxidatin of Metals 2:207CrossRefGoogle Scholar
  17. 17.
    Li B., Gleeson B. (2004). Oxidation of Metals 62:45CrossRefGoogle Scholar
  18. 18.
    Revsz A.G., Fehlner F.P. (1981). Oxidation of Metals 15:297CrossRefGoogle Scholar
  19. 19.
    Bennett M.J., Desport J.A., Labun P.A. (1984). Oxidation of Metals. 22:291CrossRefGoogle Scholar
  20. 20.
    Y. Saito, T. Maruyama, and T. Amano, Proceedings of the International Symposium on High Temperature Corrosion, (Marseille, France, 1986) p. 61Google Scholar
  21. 21.
    Kumar, Douglass D.L. (1976). Oxidation of Metals 10:1CrossRefGoogle Scholar
  22. 22.
    Basu S.N., Yurek G.J. (1991). Oxidation of Metals 36:281CrossRefGoogle Scholar
  23. 23.
    Radavich J.F. (1959). Corrosion 15:613tGoogle Scholar
  24. 24.
    M. A. Harper and B. Gleeson, Cyclic Oxidation of High Temperature Materials, M. Schutze and W. J. Quadakkers eds., Vol. 27, (EFC, IOM Communications Ltd. 273(1999) p. 273Google Scholar
  25. 25.
    Stott F.H., Wei F.I., Enahoro C.A. (1989). Werkstoffe and Korrosion. 40:198CrossRefGoogle Scholar
  26. 26.
    G. K. Bouse, in Superalloys 1996, R. D. Kissinger et al. eds, (TMS, 1996) p. 273Google Scholar
  27. 27.
    Whittle D.P., Stringer J. (1980). Philosphical Transactions of the Royal Society of London series A 295:309Google Scholar
  28. 28.
    Dayananda M.A., Kim C.W. (1979). Metallurgical Transactions A. 10A:1333Google Scholar
  29. 29.
    Dayananda M.A. (1983). Metallurgical Transaction A. 14A:1851Google Scholar
  30. 30.
    I. G. Wright, in Metals Handbook, 9th ed., Vol. 13, Corrosion, (ASM International, Metals Park, OH, 1987)Google Scholar
  31. 31.
    Gleeson B. (2000). Corrosion and Environmental Degradation of Materials, V.II: Materials Science and Technology Vol 19. Wiley-VCH, Weinheim, GermanGoogle Scholar
  32. 32.
    Lai G.Y. (1990). High-Temperature Corrosion of Engineering Alloys. ASM International, Materials Park, OHGoogle Scholar
  33. 33.
    Ahmad B., Fox P. (1999) Oxidation Metals 52:113CrossRefGoogle Scholar
  34. 34.
    Frederick S.F., Cornet I. (1955) J. Electrochem. Soc., 102(6):285Google Scholar
  35. 35.
    O. Kubashewski and B. E. Hopkins, Oxidation of Metals and Alloys, 2nd ed., (Butterworths, 1962)Google Scholar
  36. 36.
    Phalnikar C.A., Evans E.B., Baldwin W.M. (1956). Jounral of Electrochemical Society 103(8):429Google Scholar
  37. 37.
    Wagner C., Zimens K.E. (1947). Acta Chemica Scandinavica 1:547CrossRefGoogle Scholar
  38. 38.
    Mark A. Harper and Larry R. Walker, Corrosion/2001, paper 01154, (NACE, Houston, TX, 2001)Google Scholar
  39. 39.
    J. F. Shackelford, Introduction to Materials Science for Engineers, 4th ed., (Prentice-Hall, Inc., 1996)Google Scholar
  40. 40.
    Sundman B., Jansson B., Andersson J.-O. (1985). CALPHAD 9:153CrossRefGoogle Scholar
  41. 41.
    Grimvall G. (1999). Thermophysical Properties of Materials. Elsevier Science, Netherlands, North-HollandGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIowa State University AmesAmesUSA

Personalised recommendations