Advertisement

Oxidation of Metals

, Volume 64, Issue 1–2, pp 99–117 | Cite as

Influence of Laser Welding on the Alumina Growth on a Thin FeCrAl-RE Foil at High Temperature

  • H. El. Kadiri
  • R. Molins
  • Y. Bienvenu
  • M. F. Horstemeyer
Article

We study isothermal oxidation of laser welded FeCrAl-RE samples containing specific fractions of seams in a bead-on-plate configuration at approximately 900°C using thermogravimetric analysis (TGA), field emission scanning electron microscope (FEG-SEM), transmission electron microscope (TEM), electron probe microanalysis (EPMA) techniques. An important reduction in the alumina-growth rate over the fusion zone compared to the base material occurs at 900°C, thereby, suppressing the discontinuous increase in mass gain commonly observed for alumina-forming alloys when the temperature decreases from 1000°C to 900°C. This phenomenon is mainly related to the concomitant dramatic chromium carbide precipitation at the fusion zone/oxide film interface and possible earlier injection of the rare earth elements into the oxide layer. On one hand, chromium carbide precipitation, which is linked to the laser melting-induced high free carbon, contributes to improve the effectiveness of the diffusion barrier provided by the thermally growing scale. On the other hand, due to their initial high enrichment at the fusion zone surfaces, rare earth elements can penetrate in the oxide layer and promote the elimination of detrimental phase transformation of metastable platelets (γ,θ-Al2O3) to α-Al2O3 during the initial stages of oxidation.

Keywords

Laser welding metastable alumina α-Al2O3 nucleation kinetics transfor- mation; interface chromium carbides grain growth thickening of the platelets reactivity anomaly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Germidis, Doctoral thesis ENSMP (1996).Google Scholar
  2. Bartout JD., Y. Bienvenu, J. Favennec, and M. Dubus, in Bulletin du Cercle d′études des métaux, tome XVI, no. 14, (1997), p. 19.1Google Scholar
  3. H. El Kadiri, R. Molins, Y. Bienvenu, and M. Horstemeyer, Oxidation of Metals submittedGoogle Scholar
  4. H. El Kadiri, Doctoral thesis, ENSMP (2004)Google Scholar
  5. Semak, V., Matsunawa, A. 1997Journal of Physics D: Applied Physics302541CrossRefGoogle Scholar
  6. El Kadiri H., Molins R., Bienvenu Y. Oxidation of Metals (submitted)Google Scholar
  7. Jedlinski, J. 1993Oxidation of Metals.3955CrossRefGoogle Scholar
  8. Grabke, HJ. 1997Materials Science Forum.251149Google Scholar
  9. Wittmer, M. 1982Journal of Applied Physics.531007CrossRefGoogle Scholar
  10. Sundararajan T., Kuroda S., Itagaki T., Abe F. (2003). Adv. Sci. & Appl. Tech. ASM. Int. PGoogle Scholar
  11. Abderrazik, GB., Moulin, G., Huntz, AM., Berneron, R. 1984Journal of Material Science.193173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • H. El. Kadiri
    • 1
  • R. Molins
    • 1
  • Y. Bienvenu
    • 1
  • M. F. Horstemeyer
    • 2
  1. 1.Ecole des Mines de Paris, Centre des MatériauxCNRS UMR 7633EvryFrance
  2. 2.Center for Advanced Vehicular SystemsMississippi State UniversityUSA

Personalised recommendations