Advertisement

Origins of Life and Evolution of Biospheres

, Volume 43, Issue 4–5, pp 305–322 | Cite as

Reduction of Nitrite and Nitrate on Nano-dimensioned FeS

  • Alexander D. Gordon
  • Alexander Smirnov
  • Samantha L. Shumlas
  • Soujanya Singireddy
  • Matthew DeCesare
  • Martin A. A. Schoonen
  • Daniel R. Strongin
Prebiotic Chemistry

Abstract

The reaction of nitrite (NO2 ) and nitrate (NO3 ) on nanometer-sized FeS particles was investigated in alkaline (initial pH = 10.3) solutions at reaction temperatures of 22, 70, and 120 °C using in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and fluorescence spectroscopy that allowed an analysis of adsorbate complexation on the FeS and reaction product in the aqueous phase, respectively. ATR-FTIR showed that NO was a surface-bound intermediate on FeS during its exposure to NO2 at all three reaction temperatures. Ammonia/ammonium (NH3/NH4 +) product was also produced when FeS was exposed to NO2 at the 70 °C and 120 °C reaction temperatures. Activation of NO3 to form surface-bound NO was experimentally observed to occur at 120 °C on FeS, but not at the lower reaction temperatures. Furthermore, NH3/NH4 + product in the aqueous phase was only present during the reaction of FeS with NO3 at the highest temperature used in this study.

Keywords

Nitrite Nitrate Attenuated total reflection Fourier transform infrared Ammonium formation 

Notes

Acknowledgments

The authors acknowledge support from the NASA Astrobiology Biogeocatalysis Center at Montana State University funded by the NASA Astrobiology Institute (NNA08CN85A).

References

  1. Amornthammarong N, Zhang J-Z (2008) Shipboard fluorometric flow analyzer for high-resolution underway measurement of ammonium in seawater. Anal Chem 80:1019–1026PubMedCrossRefGoogle Scholar
  2. Andrews L, Hassanzadeh P, Brabson GD, Citra A, Neurock M (1996) Reactions of nitric oxide with sulfur species. Infrared spectra and density functional theory calculations for SNO, SNO, SSNO, and SNNO in solid argon. J Phys Chem 100(20):8273–8279CrossRefGoogle Scholar
  3. Bertini I, Gray HB, Stiefel HI, Selverstone-Valentine J (2007) Biological inorganic chemistry: Structure and reactivity. University Science, SausalitoGoogle Scholar
  4. Blöchl E, Keller M, Wächtershäuser G, Stetter KO (1992) Reactions depending on iron sulfide and linking geochemistry with biochemistry. PNAS 89:8117–8120PubMedCentralPubMedCrossRefGoogle Scholar
  5. Brandes JA, Boctor NZ, Cody GD, Cooper BA, Hazen RM, Yoder HS Jr (1998) Abiotic nitrogen reduction on the early Earth. Nature 395:365–367PubMedCrossRefGoogle Scholar
  6. Braterman PS (1975) Metal carbonyl spectra. Academic, LondonGoogle Scholar
  7. Brown WA, Kind DA (2000) NO chemisorptions and reactions on metal surfaces: a new perspective. J Phys Chem B 104(12):2578–2595CrossRefGoogle Scholar
  8. Cullen WR, Crow JP, Herring FG, Sams JR, Tapping RL (1971) Mossbauer and electron paramagnetic resonance studies of some iron nitrosyl complexes. Inorg Chem 10(8):1616–1623CrossRefGoogle Scholar
  9. Dinerman CE, Ewing GE (1970) Infrared spectrum, structure, and hear of formation of gaseous (NO)2. J Chem Phys 53(2):626–631CrossRefGoogle Scholar
  10. Ducluzeau AL, van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ, Nitschke W (2009) Was nitric oxide the first deep electron sink? Trends Biochem Sci 34(1):9–15PubMedCrossRefGoogle Scholar
  11. Dumas P, Suhren M, Chabal YJ, Hirschmugl CJ, Williams GP (1997) Adsorption and reactivity of NO on Cu(111): a synchrotron infrared reflection absorption spectroscopic study. Surf Sci 371(2/3):200–212CrossRefGoogle Scholar
  12. Enemark JH, Feltham RD (1974) Principles of structure bonding and reactivity for metal nitrosyl complexes. Coord Chem Rev 4:339–406CrossRefGoogle Scholar
  13. Goodman AL, Miller TM, Grassian VH (1998) Heterogeneous reactions of NO2 on NACl and Al2O3 particles. J Vac Sci Technol A 16(4):2585–2590CrossRefGoogle Scholar
  14. Hadjiivanov KI (2000) Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal Rev - Sci Eng 42:71–144CrossRefGoogle Scholar
  15. Hess C, Ozensoy E, Yi CW, Goodman DW (2006) NO dimer and dinitrosyl formation on Pd(111) from ultra-high vacuum to elevated pressure conditions. J Am Chem Soc 128(9):2988–2994PubMedCrossRefGoogle Scholar
  16. Kim CM, Yi CW, Goodman DW (2002) Adsorption and reactions of NO on Cu(100); an infrared reflection absorption spectroscopic study at 25 K. J Phys Chem B 106(28):7065–7068CrossRefGoogle Scholar
  17. Ling Y, Mills C, Weber R, Yang L, Zhang Y (2010) NMR, IR/Raman and structural properties in HNO and RNO (R=Alkyl and Aryl) metalloporphyrins with implication for the HNO-myoglobin complex. J Am Chem Soc 132(5):1583–1591PubMedCentralPubMedCrossRefGoogle Scholar
  18. Macleod G, McKeown C, Hall AJ, Russell MJ (1994) Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Orig Life Evol Biosph 24:19–41PubMedCrossRefGoogle Scholar
  19. McGlynn SE, Shepard E, Ruebush S, Broderick JB, Peters JW (2009) FeFe hydrogenases: a modern bio-catalytic link to ancient geochemistry. Orig Life Evol Biosph 39:319–320Google Scholar
  20. Michel FM, Antao SM, Chupas PJ, Lee PL, Parise JB, Schoonen MAA (2005) The short to medium range atomic order and fundamental particle size of the intitial FeS precipitate (mackinawite) from pair distribution function analysis. Chem Mater 17:6246–6255CrossRefGoogle Scholar
  21. Peters JW, Williams LD (2012) The origin of life: look up and look down. Astrobiology 12:1087–1092PubMedCrossRefGoogle Scholar
  22. Rickard D (1968) The chemistry of iron sulfide formation at low temperatures. In: Stockholm Cont. Geology. pp 67–95Google Scholar
  23. Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc 154:377–402CrossRefGoogle Scholar
  24. Russell MJ, Hall AJ, Cairns-Smith AG, Braterman PS (1988) Submarine hot springs and the origin of life. Nature 336:117CrossRefGoogle Scholar
  25. Russell MJ, Hall AJ, Turner D (1989) In vitro growth of iron sulphide chimneys: possible culture chambers for origin-of-life experiments. Terra Nova 1:238–241CrossRefGoogle Scholar
  26. Russell MJ, Daniel RM, Hall AJ (1993) On the emergence of life via catalytic iron-sulphide membranes. Terra Nova 5:343–347CrossRefGoogle Scholar
  27. Schoonen MAA, Xu Y (2001) Nitrogen reduction under hydrothermal vent conditions: implications for the prebiotic synthesis of C-H-O-N compounds. Astrobiology 1:133–140PubMedCrossRefGoogle Scholar
  28. Singireddy S, Gordon A, Smirnov A, Vance M, Schoonen MA, Szilagyi R, Strongin D (2012) Reduction of nitrite and nitrate to ammonium on pyrite. Orig Life Evol Biosph 42:275–294PubMedCrossRefGoogle Scholar
  29. Smirnov A, Hausner D, Laffers R, Strongin D, Schoonen M (2008) Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle. Geochem Trans 9:5PubMedCentralPubMedCrossRefGoogle Scholar
  30. Summers DP (2005) Ammonia formation by the reduction of nitrite/nitrate by Fes: ammonia formation under acidic conditions. Orig Life Evol Biosph 35:299–312PubMedCrossRefGoogle Scholar
  31. Summers DP, Chang S (1993) Prebiotic ammonia from reduction of nitrite by iron(II) on the early earth. Nature 365:630–632PubMedCrossRefGoogle Scholar
  32. Summers DP, Basa RCB, Khare B, Rodoni D (2012) Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS. Astrobiology 12:107–114PubMedCrossRefGoogle Scholar
  33. Usher CR, Cleveland CA, Strongin DR, Schoonen MAA (2004) Origin of oxygen in sulfate during pyrite oxidation with water and dissolved oxygen: an in situ horizontal attenuated total reflectance infrared spectroscopy isotope study. Environ Sci Technol 38:5604–5606PubMedCrossRefGoogle Scholar
  34. Usher CR, Paul KW, Narayansamy J, Kubicki JD, Sparks DL, Schoonen MAA, Strongin DR (2005) Mechanistic aspects of pyrite oxidation in an oxidizing gaseous environment: an in situ HATR-IR isotope Study. Environ Sci Technol 39:7576–7584PubMedCrossRefGoogle Scholar
  35. Walker JCG, Brimblecombe P (1985) Iron and sulfur in the pre-biologic ocean. PreR 28:205–222Google Scholar
  36. Yoshinobu J, Kawai M (1995) Adsorption and dimer formation of nitrogen monoxide on Pt(111) at low temperature. Chem Lett 7:605–606Google Scholar
  37. Zohner A, Broda E (1979) Model experiments on nitrite and nitrate in simulated primeval conditions. Orig Life 9:291–298PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alexander D. Gordon
    • 1
    • 3
  • Alexander Smirnov
    • 2
    • 3
    • 4
  • Samantha L. Shumlas
    • 1
    • 3
  • Soujanya Singireddy
    • 1
    • 3
  • Matthew DeCesare
    • 2
    • 3
    • 5
  • Martin A. A. Schoonen
    • 2
    • 3
  • Daniel R. Strongin
    • 1
    • 3
  1. 1.Department of ChemistryTemple UniversityPhiladelphiaUSA
  2. 2.Department of GeochemistryStony Brook UniversityStony BrookUSA
  3. 3.Astrobiology Biogeocatalysis Research CenterMontana State UniversityBozemanUSA
  4. 4.Department of Earth and Marine SciencesDowling CollegeOakdaleUSA
  5. 5.Queens College - City University of New YorkQueensUSA

Personalised recommendations