Advertisement

Origins of Life and Evolution of Biospheres

, Volume 42, Issue 1, pp 55–73 | Cite as

Separation of Chiral Molecules: A Way to Homochirality

  • A. Atencio
Homochirality

Abstract

A mechanism for separating chiral molecules is proposed. The separation of two enantiomers in an aquifer is considered. The molecules are dragged in the aquifer porous medium by a flow of water or of another liquid. The molecule velocity is u = v/R, where v is the liquid velocity, and R is the retardation factor. The aquifer consists of two one-dimensional layers disposed in series. The layers differ by the retardation factor or by the liquid velocity. The enantiomer velocity is a function of the enantiomer concentrations. This function is different in the two layers. For certain values of the model parameters and when the molecules entering the aquifer are enantiomerically enriched or when the medium is chiral, the concentration of one enantiomer increases around the interface between the two layers and in one layer, whereas the concentration of the other enantiomer decreases. Enantiomer synthesis and decay are not taken into account. The needed values of the parameters can be obtained when the enantiomers are moved by an alternating liquid flow, and the retardation factor oscillates in synchronism with the alternating liquid flow. The parameters of the model are then understood as quantities averaged over one oscillation period. The equations that give the values of the stationary concentrations of the enantiomers are found. The evolution of the enantiomer concentrations is determined by numerically solving a system of two nonlinear advection-dispersion equations. The proposed mechanism may have played a role in the emergence of biomolecular homochirality.

Keywords

Aquifer Chemical evolution Chromatography Enantiomer Homochirality Nonlinear pde 

References

  1. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. AA Balkema Publishers, Leiden, The NetherlandsCrossRefGoogle Scholar
  2. Atencio A (2006) Particle separation and concentration in natural systems. Int J Astrobiol 5:23–36CrossRefGoogle Scholar
  3. Avetisov VA, Goldanskii VI (1996) Physical aspects of mirror symmetry breaking of the bioorganic world. Usp Fiz Nauk 166(8):873–891 (Engl transl: Phys Usp 39(8):819–835)CrossRefGoogle Scholar
  4. Baciocchi R, Zenoni G, Mazzotti M, Morbidelli M (2002a) Separation of binaphthol enantiomers through achiral chromatography. J Chromatogr A 944:225–240PubMedCrossRefGoogle Scholar
  5. Baciocchi R, Zenoni G, Valentini M, Mazzotti M, Morbidelli M (2002b) Measurement of the dimerization equilibrium constants of enantiomers. J Phys Chem A 106(43):10461–10469CrossRefGoogle Scholar
  6. Baciocchi R, Mazzotti M, Morbidelli M (2004) General model for the achiral chromatography of enantiomers forming dimers: application to binaphthol. J Chromatogr A 1024:15–20PubMedCrossRefGoogle Scholar
  7. Batu V (2006) Applied flow and solute transport modeling in aquifers: fundamental principles and analytical and numerical methods. CRC Press, Boca RatonGoogle Scholar
  8. Bear J, Verruijt A (1987) Modeling groundwater flow and pollution. D. Reidel Publishing Company, Dordrecht, HollandCrossRefGoogle Scholar
  9. Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North-Holland Publishing CompanyGoogle Scholar
  10. Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys 44 RG2003. doi: 10.1029/2005RG000178 CrossRefGoogle Scholar
  11. Blackmond DG (2010) The origin of biological homochirality. Cold Spring Harb Perspect Biol 2(5):a002147PubMedCrossRefGoogle Scholar
  12. Charles R, Gil-Av E (1984) Self-amplification of optical activity by chromatography on an achiral adsorbent. J Chromatogr 298(3):516–520CrossRefGoogle Scholar
  13. Cundy KC, Crooks PA (1983) Unexpected phenomenon in the high-performance liquid chromatographic analysis of racemic 14C labelled nicotine: separation of enantiomers in a totally achiral system. J Chromatogr 281:17–33CrossRefGoogle Scholar
  14. Delleur JW (ed) (2006) The handbook of groundwater engineering, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  15. Frondel C (1978) Characters of quartz fibers. Am Mineral 63(1–2):17–27Google Scholar
  16. Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974CrossRefGoogle Scholar
  17. Gieske A, De Vries JJ (1985) An analysis of earth-tide-induced groundwater flow in eastern Botswana. J Hydrol 82:211–232CrossRefGoogle Scholar
  18. Gil-Av E, Schurig V (1994) Resolution of non-racemic mixtures in achiral chromatographic systems: a model for the enantioselective effects observed. J Chromatogr A 666:519–525CrossRefGoogle Scholar
  19. Greenwood B (2005) Bars. In: Schwartz ML (ed) Encyclopedia of coastal science. Springer, The NetherlandsGoogle Scholar
  20. Guijarro A, Yus M (2009) The origin of chirality in the molecules of life. RSC Publishing, CambridgeGoogle Scholar
  21. Jupp TE, Schultz A (2004) A poroelastic model for the tidal modulation of seafloor hydrothermal systems. J Geophys Res 109:B03105. doi: 10.1029/2003JB002583 CrossRefGoogle Scholar
  22. Kagan HB (2007) Nonlinear effects in enantioselective organometallic catalysis. Oil Gas Sci Technol—Rev IFP 62(6):731–738CrossRefGoogle Scholar
  23. Klabunovskii E, Thiemann W (2000) The role of quartz in the origin of optical activity on earth. Orig Life Evol Biosph 30:431–434CrossRefGoogle Scholar
  24. Klabunovskii EI, Smith GV, Zsigmond Á (2006) Heterogeneous enantioselective hydrogenation: theory and practice. Springer, The NetherlandsCrossRefGoogle Scholar
  25. Kondepudi DK, Kaufman RJ, Singh N (1990) Chiral symmetry breaking in sodium chlorate crystallization. Science 250(4983):975–976PubMedCrossRefGoogle Scholar
  26. Konikow LF (2011) The secret to successful solute-transport modeling. Ground Water 49(2):144–159PubMedCrossRefGoogle Scholar
  27. Kurganov A (1996) Effect of solute association on the apparent adsorption isotherm. A model of the separation of non-racemic mixtures of enantiomers in achiral chromatographic systems. Chromatographia 43(1/2):17–24CrossRefGoogle Scholar
  28. Lee TC (1999) Applied mathematics in hydrogeology. Lewis Publishers, Boca RatonGoogle Scholar
  29. Levenshtam VB (1993) Averaging of quasilinear parabolic equations with rapidly oscillating principal part. Exponential dichotomy. Russian Acad Sci Izv Math 41:95–132CrossRefGoogle Scholar
  30. Li H, Jiao JJ (2002) Analytical solutions of tidal groundwater flow in coastal two-aquifer system. Adv Water Resour 25:417–426CrossRefGoogle Scholar
  31. Morowitz H (1969) Mechanism for the amplification of fluctuations in racemic mixtures. J Theor Biol 25:491–494PubMedCrossRefGoogle Scholar
  32. Noorduin WL, Izumi T, Millemaggi A, Leeman M, Meekes H, van Enckevort WJP, Kellogg RM, Kaptein B, Vlieg E, Blackmond DG (2008) Emergence of a single solid chiral state from a nearly racemic amino acid derivative. J Am Chem Soc 130:1158–1159PubMedCrossRefGoogle Scholar
  33. Peters GP, Smith DW (2001) Numerical study of boundary conditions for solute transport through a porous medium. Int. J Numer Anal Methods Geomech 25:629–650CrossRefGoogle Scholar
  34. Podlech J (2001) Origin of organic molecules and biomolecular homochirality. Cell Mol Life Sci 58(1):44–60PubMedCrossRefGoogle Scholar
  35. Rice RG, Foo SC (1981) Continuous desalination using cyclic mass transfer on bifunctional resins. Ind Eng Chem Fundam 20(2):150–155CrossRefGoogle Scholar
  36. Schulze-Makuch D (2005) Longitudinal dispersivity data and implications for scaling behavior. Ground Water 43(3):443–456PubMedCrossRefGoogle Scholar
  37. Schwartz RC, McInnes KJ, Juo ASR, Wilding LP, Reddell DL (1999) Boundary effects on solute transport in finite soil columns. Water Resour Res 35(3):671–681CrossRefGoogle Scholar
  38. Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767–768CrossRefGoogle Scholar
  39. Tompson AFB (1993) Numerical simulation of chemical migration in physically and chemically heterogeneous porous media. Water Resour Res 29(11):3709–3726CrossRefGoogle Scholar
  40. Vance S, Harnmeijer J, Kimura J, Hussmann H, Demartin B, Brown JM (2007) Hydrothermal systems in small ocean planets. Astrobiology 7(6):987–1005PubMedCrossRefGoogle Scholar
  41. Viedma C (2005) Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys Rev Lett 94:065504PubMedCrossRefGoogle Scholar
  42. Wilhelm RH, Rice AW, Bendelius AR (1966) Parametric pumping: dynamic principle for separating fluid mixtures. Ind Eng Chem Fundam 5(1):141–144CrossRefGoogle Scholar
  43. Zheng C, Bennett GD (1995) Applied contaminant transport modeling: theory and practice. Van Nostrand Reinhold, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Spectroscopy, Russian Academy of ScienceTroitskRussia

Personalised recommendations