Spontaneous Mirror Symmetry Breaking in the Aldol Reaction and its Potential Relevance in Prebiotic Chemistry

  • Michael Mauksch
  • Shengwei Wei
  • Matthias Freund
  • Alexandru Zamfir
  • Svetlana B. Tsogoeva


The origin of the single chirality of most biomolecules is still a great puzzle. Carbohydrates could form in the formose reaction, which is proposed to be autocatalytic and contains aldol reaction steps. Based on our earlier observation of organoautocatalysis and spontaneous enantioenrichment in absence of deliberate chiral influences in the aldol reaction of acetone and p-nitrobenzaldehyde we suggest that a similar effect might be present also in the aldol reactions involved in gluconeogenesis. Herein we show that reactant precipitation observed in our earlier reported experiments does not affect the asymmetric autocatalysis in the aldol reaction we studied. We explain the phenomenon of spontaneous mirror symmetry breaking in such organocatalytic homogenous systems qualitatively by non-linear reaction network kinetics and classical transition state theory.


Aldol reaction Formose reaction Absolute asymmetric synthesis Spontaneous mirror symmetry breaking Homochirality 



Generous support from the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.


  1. Alberts AH, Wynberg H (1989) The role of the product in carbon–carbon bond formation: stoichiometric and catalytic enantioselective autoinduction. J Am Chem Soc 111:7265–7266CrossRefGoogle Scholar
  2. Blackmond DG (2008) Response to comment on re-examination of reversibility in reaction models for the spontaneous emergence of homochirality. J Phys Chem B 112:9553–9555CrossRefGoogle Scholar
  3. Blackmond DG (2009) Challenging the concept of “recycling” as a mechanism for the evolution of homochirality in chemical reactions. Chirality 21:359–362CrossRefPubMedGoogle Scholar
  4. Blackmond DG, McMillan CR, Ramdeehul S, Schrom A, Brown JM (2001) Origins of asymmetric amplification in autocatalytic alkylzinc additions. J Am Chem Soc 123:10103–10104CrossRefPubMedGoogle Scholar
  5. Bonner WA (1994) Enantioselective autocatalysis, spontaneous resolution and the prebiotic generation of chirality. Orig Life Evol Biosph 24:63–78CrossRefGoogle Scholar
  6. Breslow R (1959) On the mechanism of the formose reaction. Tetrahedron Letts 21:22–26CrossRefGoogle Scholar
  7. Buono FG, Blackmond DG (2003) Kinetic evidence for a tetrameric transition state in the asymmetric autocatalytic alkylation of pyrimidyl aldehydes. J Am Chem Soc 125:8978–8979CrossRefPubMedGoogle Scholar
  8. Butlerov AM (1861) Einiges über die chemische Struktur der Körper. Zeitschr Chem 4:549–560Google Scholar
  9. Calvin M (1969) Chemical evolution. Oxford University Press, LondonGoogle Scholar
  10. Cintas P (2002) Chirality of living systems: a helping hand from crystals and oligopeptides. Angew Chem Int Ed 41:1139–1145CrossRefGoogle Scholar
  11. Cordova A, Sunden H, Xu Y, Ibrahem I, Zou W, Engquist M (2006) Sugar-assisted kinetic resolution of amino acids and amplification of enantiomeric excess of organic molecules. Chem Eur J 12:5446–5451CrossRefGoogle Scholar
  12. Crusats J, Hochberg D, Moyano A, Ribό JM (2009) Frank model and spontaneous emergence of chirality in closed systems. ChemPhysChem. doi: 10.1002/cphc.200900181 PubMedGoogle Scholar
  13. Decker P (1975) Evolution in bioids: hypercompetivity as a source of bistability and a possible role of metal complexes as prenucleoprotic mediators of molecular asymmetry. Orig Life 6:211–218CrossRefPubMedGoogle Scholar
  14. Dong F, Jun L, Xin-Li Z, Xu-Liang L (2007) Mannich reaction in water using acidic ionic liquid as recoverable and reusable catalyst. Cat Lett 116:76–80CrossRefGoogle Scholar
  15. Frank CF (1953) On spontaneous asymmetric synthesis. Biochim Biophys Acta 11:459–463CrossRefPubMedGoogle Scholar
  16. Gray P, Scott SK, Merkin JH (1988) The Brusselator model of oscillatory reactions. Relationships between two-variable and four-variable models with rigorous application of mass conservation and detailed balance. J Chem Soc, Faraday Trans 1 84:993–1011CrossRefGoogle Scholar
  17. Hayashi Y, Sumiya T, Takahashi J, Gotoh H, Urushima T, Shoji M (2005) Highly diastereo- and enantioselective direct aldol reactions in water. Angew Chem In Ed 45:958–961CrossRefGoogle Scholar
  18. Hochstim AR (1975) Nonlinear mathematical models for the origin of asymmetry in biological molecules. Orig Life Evol Biosph 6:317–366CrossRefGoogle Scholar
  19. Jackisch MA, Fronczek FR, Butler LG (1989) Structure of 4-nitrobenzaldehyde. Acta Cryst C45:2016–2018Google Scholar
  20. Kitamura M, Suga S, Niwa M, Noyori R (1995) Self- and non-self recognition of asymetric catalysts. Nonlinear effects in the amino alcohol-promoted enantioselective addition of dialkylzincs to aldehydes. J Am Chem Soc 117:4832–4842CrossRefGoogle Scholar
  21. Mauksch M, Tsogoeva SB (2008) Spontaneous emergence of homochirality via coherently coupled antagonistic and reversible reaction cycles. ChemPhysChem 9:2359–2372CrossRefPubMedGoogle Scholar
  22. Mauksch M, Tsogoeva SB, Wei S, Martynova IM (2007a) Evidence of asymmetric autocatalysis in organocatalytic reactions. Angew Chem Int Ed 46:393–396CrossRefGoogle Scholar
  23. Mauksch M, Tsogoeva SB, Martynova IM, Wei S (2007b) Demonstration of spontaneous chiral symmetry breaking in asymmetric Mannich and aldol reactions. Chirality 19:816–825CrossRefPubMedGoogle Scholar
  24. Morozov AA (1991) Selective production of trioses from formaldehyde. React Kinet Catal Lett 46:71–77CrossRefGoogle Scholar
  25. Nanita SC, Cooks RG (2006) Serine octamers: clusters formation. Reaction, and implication for biomolecule homochirality. Angewandte Chem Int Ed 45:554–569CrossRefGoogle Scholar
  26. Orgel L (2000) Self-organizing chemical cycles. Proc Natl Acad Sci 97:12503–12507CrossRefPubMedGoogle Scholar
  27. Pasteur LCR (1848) Recherches sur la Dimorphisme. Ann Chem Phys 23:267–294Google Scholar
  28. Pizzarello S, Weber AL (2004) Prebiotic amino acids as asymmetric catalysts. Science 303:1151CrossRefPubMedGoogle Scholar
  29. Plasson R (2009) Energetic and entropic analysis of mirror symmetry breaking processes in recycled microreversible chemical system. J Phys Chem B. doi: 10.1021/jp803807p PubMedGoogle Scholar
  30. Qian H, Wang H (2006) Continuous time random walks in closed and open single molecule systems with microscopic reversibility. Europhys Lett 76:15–21CrossRefGoogle Scholar
  31. Ribo JM, Hochberg D (2008) Stability of racemic and chiral steady states in open and closed chemical systems. Phys Lett A 373:111–122CrossRefGoogle Scholar
  32. Rivera Islas J, Lavabre D, Grevy JM, Lamoneda RH, Cabrera HR, Micheau JC, Buhse T (2005) Mirror-symmetry breaking in the Soai reaction: a kinetic understanding. Proc Natl Acad Sci 102:13743–13748CrossRefGoogle Scholar
  33. Rubinstein I, Clodic G, Bolbach G, Weissbuch I, Lahav M (2008) Racemic beta-sheets as templates for the generation of homochiral (isotactic) peptides from aqueous solutions of (RS)-valin or -leucin N-carboxyanhydrides: relevance to biochirogenesis. Chem Eur J 14:10999–11009CrossRefGoogle Scholar
  34. Saito Y, Hyuga H (2004) Complete homochirality induced by the nonlinear autocatalysis and recycling. J Phys Soc Jpn 73:33–35CrossRefGoogle Scholar
  35. Schiaffino L, Ercolani G (2008) Unraveling the mechanism of the Soai asymmetric autocatalytic reaction by first-principles calculations: induction and amplification of chirality by self-assembly of hexamolecular complexes. Angewandte Chem Int Ed 47:6832–6835CrossRefGoogle Scholar
  36. Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767–768CrossRefGoogle Scholar
  37. Socha RF, Weiss AH, Sakharov MM (1980) Autocatalysis in the formose reaction. React Kinet Catal Lett 14:119–128CrossRefGoogle Scholar
  38. Soloshonok VA (2006) Remarkable amplification of the self-disproportionation of enantiomers on achiral-phase chromatography columns. Angew Chem Int Ed 45:766–769CrossRefGoogle Scholar
  39. Toxvaerd S (2005) Homochirality in bio-organic systems and glyceraldehyde in the formose reaction. J Biol Phys 31:599–606CrossRefGoogle Scholar
  40. Weber AL, Pizzarello S (2006) The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution. Proc Natl Acad Sci 103:12713–12717CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Michael Mauksch
    • 1
  • Shengwei Wei
    • 1
  • Matthias Freund
    • 1
  • Alexandru Zamfir
    • 1
  • Svetlana B. Tsogoeva
    • 1
  1. 1.Department of Chemistry and PharmacyUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations