Origins of Life and Evolution of Biospheres

, Volume 38, Issue 2, pp 139–148 | Cite as

Hydrothermal Stability of Adenine Under Controlled Fugacities of N2, CO2 and H2

  • Michael Franiatte
  • Laurent Richard
  • Marcel Elie
  • Chinh Nguyen-Trung
  • Erwan Perfetti
  • Douglas E. LaRowe
Prebiotic Chemistry


An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300°C under fugacities of CO2, N2 and H2 supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after ∼24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.


Adenine Hydrothermal stability Redox conditions Thermodynamics Fugacities 


  1. Amend JP, Shock EL (1998) Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281:1659–1662PubMedCrossRefGoogle Scholar
  2. Amend JP, Shock EL (2000) Thermodynamics of amino acid synthesis in hydrothermal systems on early Earth. In: GAM Goodfriend et al (ed) Perspectives in amino acid and protein geochemistry. Oxford, pp 23–40Google Scholar
  3. Andersson E, Holm NG (2000) The stability of some selected amino acids under attempted redox constrained hydrothermal conditions. Orig Life Evol Biosph 30:9–23PubMedCrossRefGoogle Scholar
  4. Hackspill L, Besson J, Hérold A (1964) Chimie Minérale. Presses Universitaires de FranceGoogle Scholar
  5. Hennet RJC, Holm NG, Engel MH (1992) Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon? Naturwissenschaften 79:361–365PubMedCrossRefGoogle Scholar
  6. Holloway JR, Reese RL (1974) The generation of N2–CO2–H2O fluids for use in hydrothermal experimentation. I. Experimental method and equilibrium calculations in the C–O–H–N system. Amer Mineral 59:587–597Google Scholar
  7. Holm NG, Charlou JL (2001) Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet Sci Lett 191:1–8CrossRefGoogle Scholar
  8. Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comput Geosci 18:899–947CrossRefGoogle Scholar
  9. Kießling P, Scriba GKE, Süß, F, Werner G, Knoth H, Hartmann M (2004) Development and validation of a high-performance liquid chromatography assay and a capillary electrophoresis assay for the analysis of adenosine and the degradation product adenine in infusions. J Pharm Biochem Anal 36:535–539CrossRefGoogle Scholar
  10. LaRowe DE, Helgeson HC (2006) Biomolecules in hydrothermal systems: calculation of the standard molal thermodynamic properties of nucleic-acid bases, nucleosides, and nucleotides at elevated temperatures and pressures. Geochim Cosmochim Acta 70:4680–4724CrossRefGoogle Scholar
  11. Marshall WL (1994) Hydrothermal synthesis of amino acids. Geochim Cosmochim Acta 58:2099–2106CrossRefGoogle Scholar
  12. McCollom TM, Ritter G, Simoneit BRT (1999) Lipid synthesis under hydrothermal conditions by Fischer–Tropsch-type reactions. Orig Life Evol Biosph 29:153–166PubMedCrossRefGoogle Scholar
  13. Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334:609–611PubMedCrossRefGoogle Scholar
  14. Nguyen-Trung C, Pichavant M, Weisbrod A (1980) Contribution à l’étude expérimentale du système MgO–SiO2–HCl–H2O. In: Besson M (ed) Facteurs contrôlant les minéralisations sulfurées de nickel. Editions BRGM, pp 253–263Google Scholar
  15. Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive Earth conditions. Nature 191:1193–1194PubMedCrossRefGoogle Scholar
  16. Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1986) Molecular thermodynamics of fluid-phase equilibria, 2nd edn. Prentice-HallGoogle Scholar
  17. Redlich O, Kwong JNS (1949) On the thermodynamics of solutions. V. An equation of state. Chem Phys 44:233–244Google Scholar
  18. Schoonen MAA, Xu Y, Bebie J (1999) Energetics and kinetics of the prebiotic synthesis of simple organic acids and amino acids with the FeS–H2S/FeS2 redox couple as reductant. Orig Life Evol Biosph 29:5–32PubMedCrossRefGoogle Scholar
  19. Shock EL (1990) Do amino acids equilibrate in hydrothermal fluids? Geochim Cosmochim Acta 54:1185–1189CrossRefGoogle Scholar
  20. Soave G (1972) Equilibrium constants from a modified Redlich–Kwong equation of state. Chem Eng Sci 27:1197–1203CrossRefGoogle Scholar
  21. Tanger JC, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures; revised equations of state for the standard partial molal properties of ions and electrolytes. Amer J Sci 288:19–98CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Michael Franiatte
    • 1
  • Laurent Richard
    • 1
  • Marcel Elie
    • 1
  • Chinh Nguyen-Trung
    • 1
  • Erwan Perfetti
    • 2
  • Douglas E. LaRowe
    • 3
  1. 1.Nancy-UniversitéVandoeuvre-les-Nancy cedexFrance
  2. 2.Division Géologie–Géochimie–GéophysiqueInstitut Français du PétroleRueil-Malmaison cedexFrance
  3. 3.Department of Earth Sciences—Geochemistry, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations