Advertisement

Origins of Life and Evolution of Biospheres

, Volume 37, Issue 3, pp 253–257 | Cite as

The Role of Supernova Neutrinos on Molecular Homochirality

  • Pedro Bargueño
  • Ricardo Pérez de Tudela
Article

Abstract

Electroweak parity violating interaction between supernova (SN) neutrinos and electrons of a simple chiral molecule is studied related to the origin of molecular homochirality. Appearance of supernova remnants inside molecular clouds favours the interaction of SN-neutrinos with interstellar molecules, leading to a energetic difference between the two enantiomers of the order of 10–5 eV. This energetic difference is closer to the thermic energy of the interstellar medium, so molecular homochirality could be enhanced in molecular clouds containing supernova remnants inside it due to neutrino interaction.

Keywords

chiroselection chiral molecules neutrino-electron scattering supernova neutrinos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bargueño P, Gonzalo I (2006) Effect of cosmological neutrinos on discrimination between the two enantiomers of a chiral molecule. Orig Life Evol Biosph 36:171–176PubMedCrossRefGoogle Scholar
  2. Bailey J, Chrysostomou A, Hough JH, Gledhill TM, McCall A, Clark S, Ménard F, Tamura M (1998) Circular polarization in star-formation regions. Implications for biomolecular homochirality. Science 281:672–674CrossRefGoogle Scholar
  3. Bailey J (2001) Astronomical sources of circularly polarized light and the origin of homochirality. Orig Life Evol Biosph 31(1,2):167–183PubMedCrossRefGoogle Scholar
  4. Cline DB (1996) Physical origin of homochirality in life. In: AIP Conf. Proc., 379, American Institute of Physics, Woodbury, MNGoogle Scholar
  5. Cline DB (2005) Supernova antineutrino interactions cause chiral symmetry breaking and possibly homochiral biomaterials for life. Chirality 17(S1):234–239CrossRefGoogle Scholar
  6. Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955PubMedCrossRefGoogle Scholar
  7. Duda G, Gelmini G, Nussinov S (2001) Expected signals in relic neutrino detectors. Phys Rev D 64: 122001–122011CrossRefGoogle Scholar
  8. Halzen F, Martin AD (1984) Quarks and leptons: an introductory course in modern particle physics. Wiley, New YorkGoogle Scholar
  9. Laerdahl JK, Schwerdtfeger P (1996) Theoretical analysis of parity-violating energy differences between the enantiomers of chiral molecules. Phys Rev Lett 84:3811–3814CrossRefGoogle Scholar
  10. MacDermott AJ, Barron LD, Brack A, Buhse T, Drake AF, Emery R, Gottarelli G, Greenberg JM, Haberle R, Hegstrom RA, Hobbs K, Kondepudi DK, McKay C, Moorbath S, Raulin F, Sandford M, Schwartzman DW, Thiemann WHP, Tranter GE, Zarnecki JC (1996) Homochirality as the signature of life: the SETH cigar. Planet Space Sci 44(11):1441–1446PubMedCrossRefGoogle Scholar
  11. Nuevo M, Meierhenrich UJ, d’Hendecourt L, Muñoz Caro GM, Dartois E, Deboffle D, Thiemann WH-P, Bredehft WH-P, Nahon L (2005) Enantiomeric separation of complex organic molecules produced from irradiation of interstellar/circumstellar ice analogs. Adv Space Res (in press)Google Scholar
  12. Pérez-Díaz JL, Pérez-García VM, Gonzalo I (1991) Chirality and electronic State. A new explanation of the stability of chiral molecules. Phys Lett A 160:453–456CrossRefGoogle Scholar
  13. Tsarev VA (1999) Chiral influence of neutrinos from supernova explosion. Kratkie Soobsheniya to Pizike. Brief Rep Phys 1:18–22Google Scholar
  14. Yoshida T, Kajino T, Hartmann D (2005) Constraining the spectrum of supernova neutrinos from ν process induced light elements systhesis. Phys Rev Lett 94:231101–231105PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  1. 1.Instituto de Matemáticas y Física FundamentalConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations