Origins of Life and Evolution of Biospheres

, Volume 37, Issue 1, pp 27–45 | Cite as

Phosphate Sorption and Desorption on Pyrite in Primitive Aqueous Scenarios: Relevance of acidic → Alkaline Transitions

  • Fernando de Souza-Barros
  • Raphael Braz-Levigard
  • Yonder Ching-SanJr.
  • Marisa M. B. Monte
  • José A. P. Bonapace
  • Viviane Montezano
  • Adalberto Vieyra


Phosphate (P i) sorption assays onto pyrite in media simulating primeval aquatic scenarios affected by hydrothermal emissions, reveal that acidic conditions favour P i sorption whereas mild alkaline media – as well as those simulating sulfur oxidation to SO2− 4 – revert this capture process. Several mechanisms relevant to P i availability in prebiotic eras are implicated in the modulation of these processes. Those favouring sorption are: (a) hydrophobic coating of molecules, such as acetate that could be formed in the vicinity of hydrothermal vents; (b) water and Mg2+ bridging in the interface mineral-aqueous media; (c) surface charge neutralization by monovalent cations (Na+ and K+). The increase of both the medium pH and the SO2− 4 trapping by the mineral interface would provoke the release of sorbed P i due to charge polarization. Moreover it is shown that P i self-modulates its sorption, a mechanism that depends on the abundance of SO2− 4 in the interface. The relevance of the proposed mechanisms of P i capture, release and trapping arises from the need of abundant presence of this molecule for primitive phosphorylations, since – similarly to contemporary aqueous media – inorganic phosphate concentrations in primitive seas should have been low. It is proposed that the presence of sulphide minerals with high affinity to P i could have trapped this molecule in an efficient manner, allowing its concentration in specific niches. In these niches, the conditions studied in the present work would have been relevant for its availability in soluble form, specially in primitive insulated systems with pH gradients across the wall.


Iron sulfide minerals Primitive seawater-sulfides interfaces Acidic → alkaline transitions Phosphate capture and release mechanisms Modulation of phosphate availability in primitive scenarios Phosphorylation reactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrhenius G, Sales B, Mojzsis S, Lee T (1997) Entropy and charge in molecular evolution: the case of phosphate. J Theor Biol 187:503–522PubMedCrossRefGoogle Scholar
  2. Bebié A, Schoonen MA (1999) Pyrite and phosphate in anoxia and an origin-of-life hypothesis. Earth Planet Sci Lett 171:1–5CrossRefGoogle Scholar
  3. Biaglow JE, Held KD, Manevich Y, Tuttle S, Kachur A, Uckun F (1996) Role of guanosine triphosphate in ferric ion-linked fenton chemistry. Radiat Res 145:554–62PubMedCrossRefGoogle Scholar
  4. Borda MJ, Elsetinov AR, Strongin MA, Schoonen MA (2003) A mechanism for the reduction of hydroxyl radical at the surface defect sites on pyrite. Geochim Cosmochim Acta 67:935–939CrossRefGoogle Scholar
  5. Borda MJ, Strongin DR, Schoonen MA (2004) A vibrational spectroscopic study of the oxidation of pyrite by molecular oxygen. Geochim. Cosmochim. Acta 68:1007–1813CrossRefGoogle Scholar
  6. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  7. Cairns-Smith AG (1982) Genetic takeover and the minerals origins of life. Cambridge University Press London, pp 343Google Scholar
  8. Corliss JB (1990) Hot springs and the origin of life. Nature 347:624CrossRefGoogle Scholar
  9. Evangelou VP, Huang X (1994) Infrared spectroscopic evidence of an iron (II) – carbonate complex on the surface of pyrite. Spectrochim Acta 50:1333–1340CrossRefGoogle Scholar
  10. Fiske CH, SubbaRow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375– 400Google Scholar
  11. Hermes-Lima M, Vieyra A (1992) Pyrophosphate synthesis from phospho(enol)pyruvate catalyzed by precipitated magnesium phosphate with ``enzyme-like'' activity. J Mol Evol 35:277–285PubMedCrossRefGoogle Scholar
  12. Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247PubMedCrossRefGoogle Scholar
  13. Keefe AD, Miller SL (1995) Are polyphosphates or phosphate esters prebiotic agents? J Mol Evol 41:693–702PubMedCrossRefGoogle Scholar
  14. Kasting JF, Zahnie KJ, Pinto JP, Young AT (1989) Sulfur, ultraviolet radiation, and the early evolution of life. Orig Life Evol Biosph 19:95–108PubMedCrossRefGoogle Scholar
  15. Koch AL, Schmidt TM (1991) The first cellular bioenergetic process: primitive generation of a proton-motive force. J Mol Evol 33:297–304PubMedCrossRefGoogle Scholar
  16. Lahav N (1994) Minerals and the origin of life: hypotheses and experiments in heterogeneous chemistry. Het Chem Rev 1:159–179Google Scholar
  17. Libowitzky E (1999), Correlation of O-H stretching frequencies and O-H...O hydrogen bond lengths in minerals. Monats Chem 130:1047–1059Google Scholar
  18. Martin W, Russell MJ (2002) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans R Soc Lond B358:59–85Google Scholar
  19. Miller SL, Parris M (1964) Synthesis of pyrophosphate under primitive Earth conditions. Nature 204:1248–1250CrossRefGoogle Scholar
  20. Mitchell P (1977) A commentary on alternative hypotheses of protonic coupling in the membrane systems catalysing oxidative and photosynthetic phosphorylation. FEBS Lett 78:1–20PubMedCrossRefGoogle Scholar
  21. Monte MB, Lins FF, Oliveira JF (1997) Selective flotation of gold from pyrite under oxidizing conditions. Int J Miner Process 51:255–267CrossRefGoogle Scholar
  22. Monte MBM, Duarte AC, Bonapace JAP, do Amaral Jr MR, Vieyra A, de Souza-Barros F (2003) Phosphate immobilisation by oxide precursors: implications on phosphate availability before life on Earth. Orig Life Evol Biosph 33:37–52PubMedCrossRefGoogle Scholar
  23. Nyavor K, Egiebor NO (1995) Control of pyrite oxidation by phosphate coating. Sci Total Environ 162:225–237CrossRefGoogle Scholar
  24. Ozawa K, Nemoto A, Imai EI, Honda H, Hatori K, Matsuno K (2004) Phosphorylation of nucleotide molecules in hydrothermal environments. Orig. Life Evol. Biosph 34:465–471PubMedCrossRefGoogle Scholar
  25. Paschka MG, Dzombak DA (2004) Use of dissolved sulfur species to measure pyrite dissolution in water at pH 3 and 6. Environ Eng Sci 21:411–420CrossRefGoogle Scholar
  26. Pilson MEQ (1998) An introduction to the Chemistry of the Sea, Prentice Hall Upper Saddle River New Jersey, pp. 324–325Google Scholar
  27. Persson P, Nilsson N, Sjöberg S (1996) Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface. J Colloid and Interf Sci 177:263–275CrossRefGoogle Scholar
  28. Pontes-Buarque M, Tessis AC, Bonapace JAP, Monte MB de M, de Souza- Barros F, Vieyra AR (2000) Surface charges and interfaces: implications for mineral roles in prebiotic chemistry. An Acad Bras Cien 72:317–322Google Scholar
  29. Pontes-Buarque M, Tessis AC, Lopez GC, Monte MBM, Bonapace JAP, Vieyra A, de Souza-Barros F (2001) Modulation of adenosine 5′-monophosphate adsorption onto aqueous resident pyrite: potential mechanisms for prebiotic reactions. Orig Life Evol Biosph 31:343–362CrossRefGoogle Scholar
  30. Russell MJ, Daniel RM, Hall AJ, Sherringham JA (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J Mol Evol 39:231–243CrossRefGoogle Scholar
  31. Silverstein RM, Webster FX (1998) Spectrometric identification of organic compounds. John Wiley & Sons New York, 6th Edition, p 140Google Scholar
  32. Schlesinger WH (1997) Biogeochemistry an analysis of global change, Academic Press San Diego, 2nd Edition, p 407Google Scholar
  33. Shock EL (1992) Chemical environments of submarine hydrothermal systems. Orig Life Evol Biosph 22:67–107PubMedCrossRefGoogle Scholar
  34. Schoonen MA, Elsetinow AR, Borda MA, Stongin DR (2000) Effect of temperature and illumination on pyrite oxidation between pH 2 and 6. Geochem Trans 4:23–33Google Scholar
  35. Snyder WD, Fox SW (1975) A model for the origin of stable protocells in a primitive alkaline ocean. BioSystems 7:222–229PubMedCrossRefGoogle Scholar
  36. Tessis AC, Amorim HS de A, Souza-Barros F de, Farina M, Vieyra A (1995) Adsorption of 5′-AMP and catalitic synthesis of 5′-ADP onto phosphate surfaces: correlation to solid matrix structures. Orig Life Evol Biosph 25:351–373PubMedCrossRefGoogle Scholar
  37. Tessis AC, Penteado-Fava A, Pontes-Buarque M, Amorim HS de, Bonapace JAP, Souza-Barros F de, Vieyra A (1999) Pyrite suspended in artificial sea water catalyzes hydrolysis of adsorbed ATP: enhancing effect of acetate. Orig Life Evol Biosph 29:361–374PubMedCrossRefGoogle Scholar
  38. Usher CR, Cleveland Jr CA, Strongin DR, Schoonen MA (2004) Origin of oxygen in sulfate during pyrite oxidation with water and dissolved oxygen: an in situ horizontal attenuated total reflectance infrared spectroscopy isotope study. Environ Sci Technol 38:5604–5606PubMedCrossRefGoogle Scholar
  39. Vieyra A, Gueiros-Filho F, Meyer-Fernandes JR, Costa-Sarmento G, Souza- Barros F de (1995) Reactions involving carbamyl phosphate in the presence of precipitated calcium phosphate with formation of pyrophosphate: a model for primitive energy-conservation pathways. Orig Life Evol Biosph 25:335– 350PubMedCrossRefGoogle Scholar
  40. Vilalobos M, Leckie JO (2001) Surface complexation modeling and FTIR study of carbonate adsorption to goethite. J Colloid Interf Sci 235:15–32CrossRefGoogle Scholar
  41. Yamagata Y, Watanabe H, Saitoh M, Namba T (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352:516–519PubMedCrossRefGoogle Scholar
  42. Yamamura SS, Sikes JH (1966) Use of Citrate-EDTA masking for selective determination of Iron with 1,10-Phenanthroline. Anal Chem 38:793–795CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, B.V. 2006

Authors and Affiliations

  • Fernando de Souza-Barros
    • 1
  • Raphael Braz-Levigard
    • 2
  • Yonder Ching-SanJr.
    • 2
  • Marisa M. B. Monte
    • 3
  • José A. P. Bonapace
    • 4
  • Viviane Montezano
    • 2
  • Adalberto Vieyra
    • 2
  1. 1.Instituto de FísicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de Biofísica Carlos FilhoUniversidade Federal do Rio de JaneiroFilhoBrazil
  3. 3.Centro de Tecnologia MineralMinistério da Ciência e TecnologiaRio de JaneiroBrazil
  4. 4.Instituto de QuímicaUniversidade Federal do Rio de Janeiro, Cidade UniversitáriaRio de JaneiroBrazil

Personalised recommendations