Studies in the Mineral and Salt-Catalyzed Formation of RNA Oligomers

Abstract

Activated mononucleotides oligomerize in the presence of montmorillonite clay to form RNA oligomers. In the present study, effects of salts, temperature and pH on the clay-catalyzed synthesis of RNA oligomers were investigated. This reaction is favored by relatively high concentration of salts, such as 1 M NaCl. It was shown that the presence of divalent cations was not required for this reaction. High concentrations of NH4 + and HCO3 and 0.01 M HPO4 2− inhibit the reaction. The yields of RNA oligomers decreased as the temperature was raised from 4 ^∘C to 50 ^∘C. A5′ ppA was the major product at pH's below 6. The catalytic activity of a variety of minerals and three meteorites were investigated but none of them except galena catalyzed the oligomerization. ATP was generated from ADP but it was due to the presence of HEPES buffer and not due to the minerals. Meteorites catalyzed the hydrolysis of the pyrophosphate bonds of ATP. The results suggest that oligomers of RNA could have formed in pH 7–9 solutions of alkali metal salts in the presence of montmorillonite clay.

This is a preview of subscription content, access via your institution.

References

  1. Bada, J. L. and Miller, S. L.: 1968, Ammonium Ion Concentration in the Primitive Ocean, Science 159, 423–425.

    PubMed  Article  CAS  Google Scholar 

  2. Banin, A.: 1973, Quantitative Ion Exchange Process for Clays, U.S. Patent 3,725,528.

  3. Banin, A., Lawless, J. G., Mazzurco, J., Church, F. M., Margulies, L. and Orenberg, J. B.: 1985, pH Profile of the Adsorption of Nucleotides onto Montmorillonite, Origins Life 15, 89–101.

    Article  CAS  Google Scholar 

  4. Cronin, J. R. and Chang, S.: 1993, Organic Matter in Meteorites: Molecular and Isotopic Analyses of the Murchison Meteorite, in The Chemistry of Life's Origins, Greenberg, J. M., et al. (eds.), Kluwer Academic Publishers, Netherlands, pp. 209–258.

    Google Scholar 

  5. Dawson, R. M. C., Elliott, D. C., Elliott, W. H. and Jones, K. M. (eds): 1969, Data for Biochemical Research, Oxford University Press, New York.

  6. Ding, P. Z., Kawamura, K. and Ferris, J. P.: 1996, Oligomerization of Uridine Phosphorimidazolides on Montmorillonite: A Model for the Prebiotic Synthesis of RNA on Minerals, Origins Life Evol. Biosphere 26, 151–171.

    Article  CAS  Google Scholar 

  7. Ertem, G. and Ferris, J. P.: 1998, Formation of RNA Oligomers on Montmorillonite: Site of Catalysis, Origins Life Evol. Biosphere 28, 485–499.

    Article  CAS  Google Scholar 

  8. Ertem, G. and Ferris, J. P.: 2000, Sequence- and Regio-Selectivity in the Montmorillonite-Catalyzed Synthesis of RNA, Origins Life Evol. Biosphere 30, 411–422.

    Article  CAS  Google Scholar 

  9. Ferris, J. P.: 2002, Montmorillonite Catalysis of 30-50 Mer Oligonucleotides: Laboratory Demonstration of Potential Steps in the Origin of the RNA World, Origins Life Evol. Biosphere 32, 311–332.

    Article  CAS  Google Scholar 

  10. Ferris, J. P. and Ertem, G.: 1992, Oligomerization Reactions of Ribonucleotides: The Reaction of the 5′-Phosphorimidazolide of Nucleosides on Montmorillonite and Other Minerals, Origins Life Evol. Biosphere 22, 369–381.

    Article  CAS  Google Scholar 

  11. Ferris, J. P. and Ertem, G.: 1993, Montmorillonite Catalysis of RNA Oligomer Formation in Aqueous Solution. A Model for the Prebiotic Formation of RNA, J. Am. Chem. Soc. 115, 12270–12275.

    PubMed  Article  CAS  Google Scholar 

  12. Ferris, J. P., Hill, A. R. Jr, Liu, R. and Orgel, L. E.: 1996, Synthesis of Long Prebiotic Oligomers on Mineral Surfaces, Nature 381, 59–61.

    PubMed  Article  CAS  Google Scholar 

  13. Ferris, J. P. and Nicodem, D. E.: 1972, Ammonia Photolysis and the Role of Ammonia in Chemical Evolution, Nature 238, 268–269.

    Article  CAS  Google Scholar 

  14. Gedulin, B. and Arrhenius, G.: 1994, Sources and Geochemical Evolution of RNA Precursor Molecules-The Role of Phosphate, in Nobel Symposium 84, Early Life on Earth, Columbia University press, pp. 91–106.

  15. Ferris, J. P. and Ertem, G.:1992. Oligomerization Reactions of Ribonucleotides: The Reaction of the 5′-phosphorimidazolide of Nucleosides on Montmorillonite and Other Minerals, Origins Life Evol. Biosphere 22, 369–381.

    Article  CAS  Google Scholar 

  16. Gilmour, I.: 2003. Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites. In Structural and isotopic analysis of organic matter in carbonaceous chondrites, A. M. Davis, (ed.) (Amsterdam, Elsevier), pp. 269–290.

    Google Scholar 

  17. Kanavarioti, A.:1997. Dimerization in Highly Concentrated Solutions of Phosphorimidazolide Activated Mononucleotides, Origins Life Evol. Biosphere 27, 357–376.

    Article  CAS  Google Scholar 

  18. Kerr, P. F., Hamilton, P. K. and Poll, R. J.:1951. Reference Clay Minerals API Project 49 New York.

  19. Weimann, B. J., Lohrmann, R., Orgel, L. E., Schneider-Bernloehr, H. and Sulston, J. E.:1968. Template-directed synthesis with adenosine-5′-phosphorimidazolide. Science 161, 387–388.

    PubMed  Article  CAS  Google Scholar 

  20. Good, N. E. and Izawa, S.: 1972, Hydrogen Ion Buffers, Methods Enzymol. 24, 53–68.

    PubMed  CAS  Article  Google Scholar 

  21. Grotzinger, J. P. and Kasting, J. F.: 1993, New Constraints on Precambrian Ocean Composition, J. Geol. 101, 235–243.

    PubMed  CAS  Article  Google Scholar 

  22. Hattori, K.,Takahashi, K. and Sasao, K.: 1984, ATP and AMP Formation From ADP In The Presence of Cyclodextrin, J. Inclusion Phenomena 2, 683–688.

    Article  CAS  Google Scholar 

  23. Huang, W. and Ferris, J. P.: 2003, Synthesis of 35–40 mers of RNA Oligomers from Unblocked Monomers. A Simple Approach to the RNA World, Chem. Commun. 1458–1459.

  24. Joshi, P. C., Pitsch, S. and Ferris, J. P.: 2000, Homochiral Selection in the Montmorillonite-Catalyzed and Uncatalyzed Prebiotic Synthesis of RNA, Chem. Commun. 2497–2498.

  25. Joyce, G. F., Inoue, T. and Orgel, L. E.: 1984, Non-Enzymatic Template-Directed Synthesis on RNA Random Copolymers: Poly(C,U) Templates, J. Mol. Biol. 176, 279–306.

    PubMed  Article  CAS  Google Scholar 

  26. Kaiden, H., Mikouchi, T., Nonura, K. and Miyamoto, M.: 1997, Chemical Zoning of Olivines in the Yamato-791717 CO3 Chondrite, Antarct. Meteorite Res. 10, 181–190.

    CAS  Google Scholar 

  27. Kanavarioti, A.: 1997, Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Mononucleotides, Origins Life Evol. Biosphere, 27, 357–376.

    Article  CAS  Google Scholar 

  28. Kanavarioti, A., Bernasconi, C. F., Doodokyan, D. L. and Alberas, D. J.: 1989, Magnesium Ion Catalyzed P-N Bond Hydrolysis in Imidazolide-Activated Nucleotides. Relevance to Template-Directed Synthesis of Polynucleotides, J. Am. Chem. Soc. 111, 7247–7257.

    PubMed  Article  CAS  Google Scholar 

  29. Kawamura, K. and Ferris, J. P.: 1994, Kinetic and Mechanistic Analysis of Dinucleotide and Oligonucleotide Formation from the 5′-Phosphorimidazolide of Adenosine on Na+-Montmorillonite, J. Am. Chem. Soc. 116, 7564–7572.

    PubMed  Article  CAS  Google Scholar 

  30. Kerr, P. F., Hamilton, P. K. and Poll, R. J.: 1951, American Petroleum Institute; Clay Mineral Standards. American Petroleum Institute, Project 49, Preliminary Report 7B, Chemical Analysis, Columbia University, New York.

    Google Scholar 

  31. Lozinova, T. A. and Arutyunyan, A. E.: 1990, ATP Synthesis and Free Radicals in Aqueous Solutions of ADP, Inorganic Phosphate, NADH and Riboflavin, Biophysical 35(6), 901–905.

    CAS  Google Scholar 

  32. Madden, M. E., Bodnar, R. J. and Rimstidt, J. D.: 2004, Jarosite as an Indicator of Water-Limited Chemical Weathering on Mars, 2004, Nature 431, 821–823.

    PubMed  Article  CAS  Google Scholar 

  33. Miyakawa, S. and Ferris, J. P.: 2003, Sequence- and Regioselectivity in the Montmorillonite-Catalyzed Synthesis of RNA, J. Am. Chem. Soc. 125, 8202–8208.

    PubMed  Article  CAS  Google Scholar 

  34. Murakami, T. and Ikeda, Y.: 1994, Petrology and Mineralogy of the Yamato-86751 CV3 Chondrite, Meteoritics 29, 379–409.

    Google Scholar 

  35. Prabahar, K. J. and Ferris, J. P.: 1997, Adenine Derivatives as Phosphate-Activating Groups for the Regioselective Formation of 3′, 5′-Linked Oligoadenylates on Montmorillonite: Possible Phosphate-Activating Groups for the Prebiotic Synthesis of RNA, J. Am. Chem. Soc. 119, 4330–4337.

    PubMed  Article  CAS  Google Scholar 

  36. Prabahar, K. J., Cole, T. D. and Ferris, J. P.: 1994, Effect of Phosphate Activating Group on Oligonucleotide Formation on Montmorillonite: The Regioselective Formation of 3′, 5′-Linked Oligoadenylates, J. Am. Chem. Soc. 116, 10914–10920.

    PubMed  Article  CAS  Google Scholar 

  37. Ruzicka, F. J. and Frey, P. A.: 1993, The pH Dependence for the Hydrolysis of Uridine 5′-Phosphoimidazolates, Bioorg. Chem. 21, 238–248.

    Article  CAS  Google Scholar 

  38. Sleeper, H. L. and Orgel, L. E. 1979, Template-Directed Synthesis of Oligoadenylates Catalyzed by Pb2 + ions, J. Mol. Evol. 13, 204–214.

    Article  Google Scholar 

  39. Squires, S. W., Graettinger, J. P., Davidson, R. E., Bell, J. F. III, Calvin, W., Christensen, P. R., Clark, B. C., Crisp, J. A., Farr, W. H., Herkenhoff, K. E., Johnson, J. R., Klingelhofer, G.' Knoll, A. H., McLennan, S. M., McSween, H.Y. Jr., Morris, R. V., Rice, J. W. Jr., Rieder, R. and Soderblom, L. A. 2004, In situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars, Science 306, 1709–1714.

    Article  Google Scholar 

  40. Thiel, T., Liczkowski, L. and Bissen, S. T.: 1998, New Zwitterionic Butanesulfonic Acids That Extend the Alkaline Range of Four Families of Good Buffers: Evaluation for Use in Biological Systems, J. Biochem. Biophys. Meth. 37, 117–129.

    Article  CAS  PubMed  Google Scholar 

  41. Walker, J. C. G.: 1985, Carbon Dioxide on the Early Earth, Origins Life Evol. Biosphere 16, 117–127.

    Article  CAS  Google Scholar 

  42. Wang, K.-J. and Ferris, J. P.: 2001, Effect of Inhibitors on the Montmorillonite Clay-Catalyzed Formation of RNA: Studies on the Reaction Pathway, Origins Life Evol. Biosphere 31, 381–402.

    Article  CAS  Google Scholar 

  43. Weimann, B. J., Lohrmann, R., Orgel, L. E. Schneider-Bernloehr, H. and Sulston, J. E., Template-Directed Synthesis with Adenosine-5′-phosphorimidazolide, Science 161, 387–388.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shin Miyakawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miyakawa, S., Joshi, P.C., Gaffey, M.J. et al. Studies in the Mineral and Salt-Catalyzed Formation of RNA Oligomers. Orig Life Evol Biosph 36, 343 (2006). https://doi.org/10.1007/s11084-006-9009-6

Download citation

Keywords

  • Oligomer
  • Montmorillonite
  • Galena
  • Montmorillonite Clay
  • American Petroleum Institute