The Frame of Nuclei on an Alexandroff Space

Abstract

Let \(\mathcal {O} S\) be the frame of open sets of a topological space S, and let \(N(\mathcal {O} S)\) be the frame of nuclei on \(\mathcal {O} S\). For an Alexandroff space S, we prove that \(N(\mathcal {O} S)\) is spatial iff the infinite binary tree \({\mathscr{T}}_2\) does not embed isomorphically into (S,≤), where ≤ is the specialization preorder of S.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ávila, F., Bezhansihvili, G., Morandi, P.J., Zaldívar, A.: When is the frame of nuclei spatial: A new approach. J. Pure Appl. Algebra 224(7), Paper No. 106302, 20 pp. (2020)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Beazer, R., Macnab, D.S.: Modal extensions of Heyting algebras. Colloq. Math. 41(1), 1–12 (1979)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bezhanishvili, G., Gabelaia, D., Jibladze, M.: Funayama’s theorem revisited. Algebra Universalis 70(3), 271–286 (2013)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bezhanishvili, G., Gehrke, M., Mines, R., Morandi, P.J.: Profinite completions and canonical extensions of Heyting algebras. Order 23(2–3), 143–161 (2006)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bezhanishvili, G., Ghilardi, S.: An algebraic approach to subframe logics. Intuitionistic case. Ann. Pure Appl. Logic 147(1–2), 84–100 (2007)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Dowker, C.H., Papert, D.: Quotient frames and subspaces. Proc. London Math. Soc. 16(3), 275–296 (1966)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Engelking, R.: General Topology, 2nd edn., Sigma Series in Pure Mathematics, vol. 6. Heldermann, Berlin (1989)

    Google Scholar 

  8. 8.

    Esakia, L.: Heyting Algebras. Duality Theory, Translated from the Russian by A. Evseev. Edited by G. Bezhanishvili and W. Holliday. Trends in Logic, vol. 50. Springer (2019)

  9. 9.

    Isbell, J.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Isbell, J.: On dissolute spaces. Topology Appl. 40(1), 63–70 (1991)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Johnstone, P.T.: Stone Spaces. Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  12. 12.

    Macnab, D.S.: Modal operators on Heyting algebras. Algebra Universalis 12(1), 5–29 (1981)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Munkres, J.: Topology, 2nd edn. Prentice Hall, Inc., Upper Saddle River NJ (2000)

    Google Scholar 

  14. 14.

    Niefield, S.B., Rosenthal, K.I.: Spatial sublocales and essential primes. Topology Appl. 26(3), 263–269 (1987)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Plewe, T.: Higher Order Dissolutions and Boolean Coreflections of Locales, vol. 154, 2000, Category Theory and its Applications, pp. 273–293. Montréal QC (1997)

  16. 16.

    Plewe, T.: Sublocale lattices. J. Pure Appl. Algebra 168(2-3), 309–326 (2002)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Pultr, A., Sichler, J.: A Priestley view of spatialization of frames. Cahiers Topologie Géom. Différentielle Catég. 41(3), 225–238 (2000)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Simmons, H.: A Framework for Topology, Logic Colloquium ’77 (Proc. Conf., Wrocław, 1977). Stud. Logic Foundations Math., vol. 96, pp. 239–251. North-Holland (1978)

  19. 19.

    Simmons, H.: Spaces with Boolean assemblies. Colloq. Math. 43(1), 23–39 (1980)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Simmons, H.: Near-discreteness of modules and spaces as measured by Gabriel and Cantor. J. Pure Appl. Algebra 56(2), 119–162 (1989)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Simmons, H.: Cantor-Bendixson Properties of the Assembly of a Frame, Leo Esakia on Duality in Modal and Intuitionistic Logics. Outst. Contrib. Log., vol. 4, pp 217–255. Springer, Dordrecht (2014)

    Google Scholar 

  22. 22.

    Wilson, J.T.: The Assembly Tower and Some Categorical and Algebraic Aspects of Frame Theory. Carnegie Mellon University, Ph.D. thesis (1994)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. J. Morandi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ávila, F., Bezhanishvili, G., Morandi, P.J. et al. The Frame of Nuclei on an Alexandroff Space. Order (2020). https://doi.org/10.1007/s11083-020-09528-1

Download citation

Keywords

  • Frame
  • Locale
  • Nucleus
  • Priestley space
  • Alexandroff space
  • Partial order
  • Total order
  • Tree