, Volume 35, Issue 1, pp 133–137 | Cite as

Interval Dismantlable Lattices

  • Kira Adaricheva
  • Jennifer Hyndman
  • Steffen Lempp
  • J. B. Nation


A finite lattice is interval dismantlable if it can be partitioned into an ideal and a filter, each of which can be partitioned into an ideal and a filter, etc., until you reach 1-element lattices. In this note, we find a quasi-equational basis for the pseudoquasivariety of interval dismantlable lattices, and show that there are infinitely many minimal interval non-dismantlable lattices.


Lattice Join prime Meet prime Generating set Quasivariety 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajtai, M.: On a class of finite lattices. Period. Math. Hungar. 4, 217–220 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ash, C.J.: Pseudovarieties, generalized varieties and similarly described classes. J. Algebra 92, 104–115 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gorbunov, V.A.: Algebraic Theory of Quasivarieties. Plenum, New York (1998)zbMATHGoogle Scholar
  4. 4.
    Kelly, D., Rival, I.: Crowns, fences and dismantlable lattices. Canad. J. Math. 26, 1257–1271 (1974)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Kira Adaricheva
    • 1
  • Jennifer Hyndman
    • 2
  • Steffen Lempp
    • 3
  • J. B. Nation
    • 4
  1. 1.Department of MathematicsHofstra UniversityHempsteadUSA
  2. 2.Department of Mathematics and StatisticsUniversity of Northern British ColumbiaPrince GeorgeCanada
  3. 3.Department of MathematicsUniversity of WisconsinMadisonUSA
  4. 4.Department of MathematicsUniversity of HawaiiHonoluluUSA

Personalised recommendations