, Volume 33, Issue 3, pp 371–388 | Cite as

Aggregation on a Finite Lattice



In this paper a result of B. Leclerc and B. Monjardet concerning meet-projections in finite congruence-simple atomistic lattices is generalized. We prove that the result remains valid for any finite tolerance-simple lattice; moreover, we extend it to a type of subdirect product of such lattices, introducing the notion of a generalized oligarchy.


Algorithmic decision theory Consensus theory Oligarchy Tolerance Residuation theory Classification system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1951)MATHGoogle Scholar
  2. 2.
    Blyth, T.S., Janowitz, M.F.: Residuation Theory. Pergamon (1972)Google Scholar
  3. 3.
    Chajda, I.: Algebraic Theory of Tolerance Relations. University Palackého, Olomouc (1991)MATHGoogle Scholar
  4. 4.
    Chambers, C.P., Miller, A.D.: Rules for aggregating information. Soc. Choice Welf. 36, 75–82 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Day, A.: Characterization of finite lattices that are bounded homomorphic images or sublattices of free lattices. Can. J. Math. 31, 69–78 (1979)CrossRefMATHGoogle Scholar
  6. 6.
    Day, W.H.E., McMorris, F.R.: Axiomatic consensus theory in group choice and biomathematics. SIAM Frontiers in Mathematics, vol. 29. Siam, Philadelphia PA (2003)CrossRefMATHGoogle Scholar
  7. 7.
    Dilworth, R.P.: The structure of relatively complemented lattices. Ann. Math. 51(2), 348–359 (1950)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dimitrov, D., Marchant, T., Mishra, N.: Separability and aggregation of equivalence relations. Econ. Theory 51(1), 191–212 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Erné, M.: Adjunctions and Galois connections: origins, history and development. In: Denecke, K., Erné, M., Wismath, S.L. (eds.) Galois Connections and Applications, vol. 565, pp. 1–138. Springer Science and Business Media (2013)Google Scholar
  10. 10.
    Erné, M., Reinhold, J.: Intervals in lattices of quasiorders. Order 12(4), 375–403 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Freese, R., Jezek, K., Nation, J.B.: Free lattices. American Mathematics Social, Providence (1995)CrossRefMATHGoogle Scholar
  12. 12.
    Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
  13. 13.
    Ganter, B., Körei, A., Radeleczki, S.: Extent partitions and context extensions. Math. Slovaka 63(4), 693–706 (2013)MathSciNetMATHGoogle Scholar
  14. 14.
    Grätzer, G.: Lattice Theory: Foundation. Birkhäuser (2010)Google Scholar
  15. 15.
    Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S.: The lattice of quasiorder lattices of algebras on a finite set. Algebra Universalis. in printGoogle Scholar
  16. 16.
    Janowitz, M.F.: Decreasing Baer semigroups. Glasgow. Math. J. 10, 46–51 (1969)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Janowitz, M.F.: Tolerances and congruences. Czechoslov. Math. J 36, 108–115 (1986)MathSciNetMATHGoogle Scholar
  18. 18.
    Janowitz, M.F.: Tolerances, interval orders and semiorders. Czechoslov. Math. J. 44, 21–37 (1994)MathSciNetMATHGoogle Scholar
  19. 19.
    Janowitz, M.F.: Generalized oligarchies. Presented to the American Mathematics Society, October 5. (Meeting 1092) (2013)Google Scholar
  20. 20.
    Janowitz, M.F.: Some observations on oligarchies, internal direct sums and lattice congruences. In: Pardalos, P., Goldengorin, B., Alekserov, F. (eds.) Clusters, Orders, Trees: Methods and applications, pp. 231–247. Springer, New York (2014)Google Scholar
  21. 21.
    Leclerc, B.: Consensus applications in the social sciences. In: Bock, H.H. (ed.) Classification and Related Methods of Data Analysis, pp. 333–340. North Holland, Amsterdam (1988)Google Scholar
  22. 22.
    Leclerc, B., Monjardet, B.: Latticial theory of consensus. In: Barnett, V., Molin, M., Salles, M., Schofield, N. (eds.) Social Choice, Welfare and Ethics, pp. 145–160. Cambridge University Press (1995)Google Scholar
  23. 23.
    Leclerc, B., Monjardet, B.: Aggregation and residuation. Order 30, 261–268 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mirkin, B.G.: On the problem of reconciling partitions. In: Quantitative Sociology, International Perspective on Mathematical and Statistical Modelling, pp. 441–449. Academic Press, New York (1975)Google Scholar
  25. 25.
    Monjardet, B.: Arrowian characterization of latticial federation consensus functions. Math. Soc. Sci. 20, 51–71 (1990)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Monjardet, B., Caspard, N.: On a dependence relation in finite lattices. Discr. Math. 165/166, 497–505 (1997)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Radeleczki, S.: Classification systems and the decomposition of a lattice into direct products. Math. Notes Miskolc. 1, 145–156 (2000)MathSciNetMATHGoogle Scholar
  28. 28.
    Radeleczki, S.: Classification systems and their lattice. Discussiones Mathematicae, Gen. Algebra Appl. 22, 167–181 (2002)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Szász, G.: Introduction to Lattice theory, 3rd rev. ed. Akad. Kiad. Budapest. Academic Press, New York (1964)Google Scholar
  30. 30.
    Tu̇ma, J.: On the structure of quasi-ordering lattices. Acta Universitatis Carolinae, Mathematica et Physica 43(1), 65–74 (2002)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.DIMACS Center/CoRE Building/4th FloorRutgers UniversityPiscatawayUSA
  2. 2.Mathematical InstituteUniversity of MiskolcMiskolc-EgyetemvárosHungary

Personalised recommendations