Skip to main content
Log in

The Categorical Equivalence Between Algebraic Domains and F-Augmented Closure Spaces

  • Published:
Order Aims and scope Submit manuscript

Abstract

We introduce the notion of F-augmented closure spaces by incorporating an additional structure (a family of finite subsets of the underlying set) into a given closure space in an appropriate way. We also introduce the notion of F-morphisms between F-augmented closure spaces and establish the equivalence between the category of F-augmented closure spaces and that of algebraic domains with Scott continuous maps as morphisms. Our results provide a novel approach to representing algebraic domains by means of closure spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr, M., Wells, C.: Category Theory for Computing Science, 3rd edn. Prentice Hall, Englewood Cliffs (1990)

    MATH  Google Scholar 

  2. Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)

    Article  MathSciNet  Google Scholar 

  3. Birkhoff, G.: On the combination of topologies. Fundam. Math. 26, 156–166 (1936)

    Google Scholar 

  4. Büchi, J.R.: Representation of complete lattices by sets. Port. Math. 11, 151–167 (1952)

    Google Scholar 

  5. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  6. Edelman, P.H.: Meet-distributive lattices and the anti-exchange closure. Algebra Univers. 10, 290–299 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Erné: Lattice representations for categories of closure spaces, Categorical topology (Toledo, OH, 1983). In: Bentley, H.L. (ed.) Sigma Series in Pure Mathematics, vol. 5, pp. 197–222. Heldermann, Berlin (1984)

    Google Scholar 

  8. Erné, M.: Compact generation in partially ordered sets. J. Aust. Math. Soc. 42, 69–83 (1987)

    Article  MATH  Google Scholar 

  9. M. Erné: The ABC of order and topology. In: Herrlich, H., Porst, H.-E. (eds.) Category Theory at Work, pp. 57–83. Heldermann Verlag, Berlin (1991)

    Google Scholar 

  10. M. Erné: Algebraic ordered sets and their generalizations. In: Rosenberg, I., Sabidussi, G. (eds.) Algebras and Orders, Proc. Montreal 1992, pp. 113–192. Kluwer, Amsterdam (1994)

    Google Scholar 

  11. M. Erné: General stone duality. Topol. Appl. 137(1–3), 125–158 (2004)

    Article  MATH  Google Scholar 

  12. M. Erné: Minimal bases, ideal extensions, and basic dualities. Topol. Proc. 29, 445–489 (2005)

    MATH  Google Scholar 

  13. M. Erné: Closure. In: Mynard, F., Pearl, E. (eds.) Beyond Topology, Contemporary Mathematics, vol. 486, pp. 163–238. American Mathematical Society, Providence (2009)

  14. Frink, O.: Ideals in partially ordered sets. Am. Math. Mon. 61, 223–234 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  16. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  17. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  18. Larsen, K.G., Winskel, G.: Using information systems to solve domain equations effectively. In: Kahn, G., MacQueen, D.B., Plotkin, G. (eds.) Semantics of Data Types, Lecture Notes in Computer Science, vol. 173, pp. 109–129. Springer, Berlin (1984)

    Google Scholar 

  19. Ore, O.: Combinations of closure relations. Ann. Math. 44, 514–533 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  20. Priestley, H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. 24(3), 507–530 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  21. Raney, G.N.: Completely distributive complete lattices. Proc. Am. Math. Soc. 3(5), 677–680 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stone, M.H.: The theory of representations of Boolean algebras. Trans. Am. Math. Soc. 40, 37–111 (1936)

    Google Scholar 

  23. Wright, J.B., Wagner, E.G., Thatcher, J.W.: A uniform approach to inductive posets and inductive closure. Theor. Comput. Sci. 7, 57–77 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang, G.-Q., Shen, G.Q.: Approximable concepts, Chu spaces, and information systems. Theory Appl. Categ. 17(5), 80–102 (2006)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Li, Q. The Categorical Equivalence Between Algebraic Domains and F-Augmented Closure Spaces. Order 32, 101–116 (2015). https://doi.org/10.1007/s11083-014-9318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-014-9318-8

Keywords

Mathematics Subject Classifications (2010)

Navigation