, Volume 32, Issue 1, pp 101–116 | Cite as

The Categorical Equivalence Between Algebraic Domains and F-Augmented Closure Spaces

  • Lankun Guo
  • Qingguo Li


We introduce the notion of F-augmented closure spaces by incorporating an additional structure (a family of finite subsets of the underlying set) into a given closure space in an appropriate way. We also introduce the notion of F-morphisms between F-augmented closure spaces and establish the equivalence between the category of F-augmented closure spaces and that of algebraic domains with Scott continuous maps as morphisms. Our results provide a novel approach to representing algebraic domains by means of closure spaces.


Closure space Algebraic domain Equivalence of categories 

Mathematics Subject Classifications (2010)

Primary 06A15 18B35 Secondary 06B15 54B30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barr, M., Wells, C.: Category Theory for Computing Science, 3rd edn. Prentice Hall, Englewood Cliffs (1990)MATHGoogle Scholar
  2. 2.
    Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Birkhoff, G.: On the combination of topologies. Fundam. Math. 26, 156–166 (1936)Google Scholar
  4. 4.
    Büchi, J.R.: Representation of complete lattices by sets. Port. Math. 11, 151–167 (1952)Google Scholar
  5. 5.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Edelman, P.H.: Meet-distributive lattices and the anti-exchange closure. Algebra Univers. 10, 290–299 (1980)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    M. Erné: Lattice representations for categories of closure spaces, Categorical topology (Toledo, OH, 1983). In: Bentley, H.L. (ed.) Sigma Series in Pure Mathematics, vol. 5, pp. 197–222. Heldermann, Berlin (1984)Google Scholar
  8. 8.
    Erné, M.: Compact generation in partially ordered sets. J. Aust. Math. Soc. 42, 69–83 (1987)CrossRefMATHGoogle Scholar
  9. 9.
    M. Erné: The ABC of order and topology. In: Herrlich, H., Porst, H.-E. (eds.) Category Theory at Work, pp. 57–83. Heldermann Verlag, Berlin (1991)Google Scholar
  10. 10.
    M. Erné: Algebraic ordered sets and their generalizations. In: Rosenberg, I., Sabidussi, G. (eds.) Algebras and Orders, Proc. Montreal 1992, pp. 113–192. Kluwer, Amsterdam (1994)Google Scholar
  11. 11.
    M. Erné: General stone duality. Topol. Appl. 137(1–3), 125–158 (2004)CrossRefMATHGoogle Scholar
  12. 12.
    M. Erné: Minimal bases, ideal extensions, and basic dualities. Topol. Proc. 29, 445–489 (2005)MATHGoogle Scholar
  13. 13.
    M. Erné: Closure. In: Mynard, F., Pearl, E. (eds.) Beyond Topology, Contemporary Mathematics, vol. 486, pp. 163–238. American Mathematical Society, Providence (2009)Google Scholar
  14. 14.
    Frink, O.: Ideals in partially ordered sets. Am. Math. Mon. 61, 223–234 (1954)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
  16. 16.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  17. 17.
    Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)MATHGoogle Scholar
  18. 18.
    Larsen, K.G., Winskel, G.: Using information systems to solve domain equations effectively. In: Kahn, G., MacQueen, D.B., Plotkin, G. (eds.) Semantics of Data Types, Lecture Notes in Computer Science, vol. 173, pp. 109–129. Springer, Berlin (1984)Google Scholar
  19. 19.
    Ore, O.: Combinations of closure relations. Ann. Math. 44, 514–533 (1943)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Priestley, H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. 24(3), 507–530 (1972)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Raney, G.N.: Completely distributive complete lattices. Proc. Am. Math. Soc. 3(5), 677–680 (1952)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Stone, M.H.: The theory of representations of Boolean algebras. Trans. Am. Math. Soc. 40, 37–111 (1936)Google Scholar
  23. 23.
    Wright, J.B., Wagner, E.G., Thatcher, J.W.: A uniform approach to inductive posets and inductive closure. Theor. Comput. Sci. 7, 57–77 (1978)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Zhang, G.-Q., Shen, G.Q.: Approximable concepts, Chu spaces, and information systems. Theory Appl. Categ. 17(5), 80–102 (2006)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.College of Information Science and EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.College of Mathematics and EconometricsHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations