, Volume 31, Issue 1, pp 55–79 | Cite as

Suslin Lattices

  • Dilip Raghavan
  • Teruyuki Yorioka


In their work on spreading models in Banach spaces, Dilworth et al. (Isr J Math 161:387–411, 2007) introduced the notion of a Suslin lower semi-lattice, a seemingly slight weakening of the notion of a Suslin tree. They posed several problems of a set theoretic nature regarding their notion. In this paper, we make a systematic study of the notion of Suslin lower semi-lattice, answering some of the questions raised by Dilworth, Odell, and Sari.


Lattice Suslin tree P-ideal dichotomy Iterated forcing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumgartner, J.E.: Chains and antichains in \({\mathcal P}(\omega)\). J. Symb. Log. 45(1), 85–92 (1980)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Baumgartner, J.E., Komjáth, P.: Boolean algebras in which every chain and antichain is countable. Fundam. Math. 111(2), 125–133 (1981)MATHGoogle Scholar
  3. 3.
    Baumgartner, J.E., Malitz, J., Reinhardt, W.: Embedding trees in the rationals. Proc. Natl. Acad. Sci. U.S.A. 67, 1748–1753 (1970)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Dilworth, S.J., Odell, E., Sari, B.: Lattice structures and spreading models. Isr. J. Math. 161, 387–411 (2007)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Farah, I., Ketchersid, R., Larson, P., Magidor, M.: Absoluteness for universally Baire sets and the uncountable. II, Computational prospects of infinity. Part II. Presented talks, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 15, pp. 163–191. World Sci. Publ., Hackensack, NJ (2008)CrossRefGoogle Scholar
  6. 6.
    Harrington, L., Marker, D., Shelah, S.: Borel orderings. Trans. Am. Math. Soc. 310(1), 293–302 (1988)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Shelah, S.: On uncountable Boolean algebras with no uncountable pairwise comparable or incomparable sets of elements. Notre Dame J. Form. Log. 22(4), 301–308 (1981)CrossRefMATHGoogle Scholar
  8. 8.
    Todorčević, S.: Directed sets and cofinal types. Trans. Am. Math. Soc. 290(2), 711–723 (1985)MATHGoogle Scholar
  9. 9.
    Todorčević, S.: Partition problems in topology. In: Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI (1989)Google Scholar
  10. 10.
    Todorčević, S.: A dichotomy for P-ideals of countable sets. Fundam. Math. 166(3), 251–267 (2000)MATHGoogle Scholar
  11. 11.
    van Douwen, E.K., Kunen, K.: L-spaces and S-spaces in \({\mathcal P}(\omega)\). Topol. Its Appl. 14(2), 143–149 (1982)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Graduate School of System InformaticsKobe UniversityKobeJapan
  2. 2.Department of Mathematics, Faculty of ScienceShizuoka UniversityShizuokaJapan

Personalised recommendations