Advertisement

Order

, Volume 30, Issue 2, pp 363–401 | Cite as

Associativity, Commutativity and Symmetry in Residuated Structures

  • Maria Emilia Della Stella
  • Cosimo Guido
Article

Abstract

In this paper we develop the study of extended-order algebras, recently introduced by C. Guido and P. Toto, which are implicative algebras that generalize all the widely considered integral residuated structures. Particular care is devoted to the requirement of completeness that can be obtained by the MacNeille completion process. Associativity, commutativity and symmetry assumptions are characterized and their role is discussed toward the structure of the algebra and of its completion. As an application, further operations corresponding to the logical connectives of conjunction negation and disjunction are considered and their properties are investigated, either assuming or excluding the additional conditions of associativity, commutativity and symmetry. An overlook is also devoted to the relationship with other similar structures already considered such as implication algebras (in particular Heyting algebras), BCK algebras, quantales, residuated lattices and closed categories.

Keywords

Lattice-ordered structures Residuated lattices Extended-order algebras MacNeille completion Galois connections Logical connectives 

Mathematics Subject Classifications (2010)

03B50 03G10 03G25 06B23 06F99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blount, K., Tsinakis, C.: The structure of residuated lattices. Internat. J. Algebra Comput. 13, 437–461 (2003)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ciabattoni, A., Galatos, N., Terui, K.: MacNeille Completions of FL-algebras. Algebra Univers. 66, 405–420 (2011)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundation of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  4. 4.
    Ciungu, L.C.: The radical of perfect residuated structure. Inf. Sci. 179, 2695–2709 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Della Stella, M.E., Guido, C.: Extended-order algebras and fuzzy implicators. Soft Comput. (2012). doi: 10.1007/s00500-012-0840-6 Google Scholar
  6. 6.
    Demirci, M.: Pointed semi-quantales and lattice valued topological spaces. Fuzzy Sets Syst. 161, 1224–1241 (2010)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Denniston, J.T., Rodabaugh, S.E.: Functorial relationship between lattice-valued topology and topological systems. Quaest. Math. 32, 139–186 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Diego, A.: Sur Les Algèbres De Hilbert. Collection de Logique Mathématique, Sér. A, n. 21. Gauthier-Villars, Paris (French) (1966)Google Scholar
  9. 9.
    Dilworth, R.P.: Non-commutative residuated lattices. Trans. Am. Math. Soc. 46, 426–444 (1939)MathSciNetGoogle Scholar
  10. 10.
    Eilenberg, S., Kelly, G.M.: Closed categories. In: Eilenberg, S., Harrison, D.K. (eds.) Proceedings of the Conference on Categorical Algebra (la Jolla, 1965), pp. 421–562. Springer, Berlin (1966)CrossRefGoogle Scholar
  11. 11.
    Frascella, A.: Fuzzy Galois connections under weak conditions. Fuzzy Sets Syst. 172, 33–50 (2011)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated lattices: an algebraic glimpse at substructural logics. In: Studies in Logic and The Foundations of Mathematics, vol. 151. Elsevier (2007)Google Scholar
  13. 13.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A compendium of Continuous Lattices. Springer, Berlin/Heidelberg/New York (1980)MATHCrossRefGoogle Scholar
  14. 14.
    Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–167 (1967)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gottwald, S.: Many-valued logic and fuzzy set theory. In: Höhle, U., Rodabaugh, S.E. (eds.) Mathematics of Fuzzy Sets: Logic, Topology, And Measure Theory. The Handbooks of Fuzzy Set Series, vol. 3, pp. 5–89. Kluwer Academic Publishers, Boston/Dordrecht/London (1999)CrossRefGoogle Scholar
  16. 16.
    Guido, C.: Lattice-valued categories. In: Klement, E.P., Rodabaugh, S.E., Stout, L.N. (eds.) Foundations of Lattice-Valued Mathematics with Applications to Algebra and Topology: Abstracts of 29th Linz Seminar on Fuzzy Set Theory, pp. 35–37. Universitätsdirektion Johannes Kepler Universtät, Bildungszentrum St. Magdalena, Linz, Austria (A-4040, Linz) (2008)Google Scholar
  17. 17.
    Guido, C., Toto, P.: Extended-order algebras. J. Appl. Log. 6, 609–626 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic- Studia Logica Library, vol. 4. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  19. 19.
    Höhle, U., Klement, E.P. (eds.): Non-Classical Logics and Their Applications To Fuzzy Subsets. A Handbook of Mathematical Foundations of Fuzzy Set Theory, Theory and Decision Library-Series B: Mathematical and Statistical Methods, vol. 32. Kluwer Academic Publishers, Boston/Dordrecht/London (1995)MATHGoogle Scholar
  20. 20.
    Höhle, U., Rodabaugh, S.E. (eds.): Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The Handbooks of Fuzzy Set Series, vol. 3. Kluwer Academic Publishers, Boston/Dordrecht/London (1999)MATHGoogle Scholar
  21. 21.
    Iorgulescu, A.: Classes of pseudo-BCK algebras, Part I. J. Mult.-Valued Logic Soft. Comput. 12, 71–130 (2006)MathSciNetMATHGoogle Scholar
  22. 22.
    Iorgulescu, A.: Classes of pseudo-BCK algebras, Part II. J. Mult.-Valued Logic Soft. Comput. 12, 575–629 (2006)MathSciNetMATHGoogle Scholar
  23. 23.
    Jipsen, P., Tsinakis, C.: A survey of residuated lattices. In: Martinez, J. (ed.) Ordered Algebraic Structures, pp. 19–56. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  24. 24.
    Johnstone, P.T.: Stone Spaces. Cambridge Univ. Press, Cambridge (1982)Google Scholar
  25. 25.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Position paper I: basic, analytical and algebraic properties. Fuzzy Sets Syst. 143, 5–26 (2004)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Lovwere, R.: Metric spaces, generalized logic, and closed categories. Rend. Semin. Mat. Fis. Milano 43, 135–166 (1973)CrossRefGoogle Scholar
  27. 27.
    MacNeille, H.M.: Partially ordered sets. Trans. Am. Math. Soc. 42, 416–460 (1937)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mulvey, C.J.: &. Rend. Circ. Mat. Palermo 12(2), 99–104 (1986)Google Scholar
  29. 29.
    Rasiowa, H.: An algebraic approach to non-classical logics. In: Studies in Logics and the Foundations of Mathematics, vol. 78. North-Holland, Amsterdam (1974)Google Scholar
  30. 30.
    Rosenthal, K.I.: Quantales and theirs Applications. In: Pitman Research Notes in Mathematics 234. Longman, Scientific and Technical (1990)Google Scholar
  31. 31.
    Shi, Y., Van Gasse, B., Ruan, D., Kerre, E.E.: On dependencies and independencies of fuzzy implication axioms. Fuzzy Sets and Syst. 161, 1388–1405 (2010)MATHCrossRefGoogle Scholar
  32. 32.
    Solovyov, S.A.: Extended-order algebras as a generalization of posets. Demonstr. Math. 44, 589–614 (2011)MathSciNetMATHGoogle Scholar
  33. 33.
    Ward, M., Dilworth, R.P.: Residuated lattices. Trans. Am. Math. Soc. 45, 335–354 (1939)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhang, D.: Implication structures, fuzzy subsets, and enriched categories. Fuzzy Sets Syst. 161, 1205–1223 (2010)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TrentoPovoItaly
  2. 2.Department of Mathematics “E. De Giorgi”University of SalentoPiazza TancrediItaly

Personalised recommendations