, Volume 28, Issue 3, pp 455–464 | Cite as

First-Fit is Linear on Posets Excluding Two Long Incomparable Chains

  • Gwenaël Joret
  • Kevin G. Milans


A poset is \((\underline{r}+\underline{s})\)-free if it does not contain two incomparable chains of size r and s, respectively. We prove that when r and s are at least 2, the First-Fit algorithm partitions every \((\underline{r}+\underline{s})\)-free poset P into at most 8(r − 1)(s − 1)w chains, where w is the width of P. This solves an open problem of Bosek et al. (SIAM J Discrete Math 23(4):1992–1999, 2010).


First-Fit On-line chain partition Column construction method Forbidden subposet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bosek, B., Felsner, S., Kloch, K., Krawczyk, T., Matecki, G., Micek, P.: On-line chain partitions of orders: a survey.∼felsner/Paper/ol-survey.pdf (2010). Accessed 10 Oct 2010
  2. 2.
    Bosek, B., Krawczyk, T., Szczypka, E.: First-fit algorithm for the on-line chain partitioning problem. SIAM J. Discrete Math. 23(4), 1992–1999 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bosek, B., Krawczyk, T.: The subexponential upper bound for on-line chain partitioning problem. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010) (2010)Google Scholar
  4. 4.
    Chrobak, M., Ślusarek, M.: On some packing problem related to dynamic storage allocation. RAIRO Inform. Théor. Appl. 22(4), 487–499 (1988)MathSciNetMATHGoogle Scholar
  5. 5.
    Felsner, S., Krawczyk, T., Trotter, W.T.: On-line dimension for posets excluding two long incomparable chains.∼felsner/Paper/oldim.pdf (2010). Accessed 10 Oct 2010
  6. 6.
    Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J. Math. Psychol. 7, 144–149 (1970)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Kierstead, H.A., Qin, J.: Coloring interval graphs with First-Fit. Discrete Math. 144(1–3), 47–57 (1995) (Combinatorics of ordered sets (Oberwolfach, 1991))MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kierstead, H.A., Trotter, W.T.: An extremal problem in recursive combinatorics. In: Proceedings of the Twelfth Southeastern Conference on Combinatorics, Graph Theory and Computing, vol. II (Baton Rouge, La., 1981), vol. 33, pp. 143–153 (1981)Google Scholar
  9. 9.
    Kierstead, H.A.: Recursive ordered sets. In: Combinatorics and ordered sets (Arcata, Calif., 1985). Contemp. Math., vol. 57, pp. 75–102. Amer. Math. Soc., Providence, RI (1986)Google Scholar
  10. 10.
    Kierstead, H.A.: The linearity of first-fit coloring of interval graphs. SIAM J. Discrete Math. 1(4), 526–530 (1988)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Narayanaswamy, N.S., Subhash Babu, R.: A note on first-fit coloring of interval graphs. Order 25(1), 49–53 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Pemmaraju, S.V., Raman, R., Varadarajan, K.: Buffer minimization using max-coloring. In: SODA ’04: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 562–571. Society for Industrial and Applied Mathematics (2004)Google Scholar
  13. 13.
    Pemmaraju, S.V., Raman, R., Varadarajan, K.: Max-coloring and online coloring with bandwidths on interval graphs. ACM Transactions on Algorithms (2010, accepted)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Département d’InformatiqueUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Department of MathematicsUniversity of South CarolinaColumbiaUSA

Personalised recommendations