, Volume 27, Issue 3, pp 261–282 | Cite as

Join-Irreducible Boolean Functions

  • Moncef Bouaziz
  • Miguel Couceiro
  • Maurice Pouzet


This paper is a contribution to the study of a quasi-order on the set Ω of Boolean functions, the simple minor quasi-order. We look at the join-irreducible members of the resulting poset \(\tilde{\Omega}\). Using a two-way correspondence between Boolean functions and hypergraphs, join-irreducibility translates into a combinatorial property of hypergraphs. We observe that among Steiner systems, those which yield join-irreducible members of \(\tilde{\Omega}\) are the − 2-monomorphic Steiner systems. We also describe the graphs which correspond to join-irreducible members of \(\tilde{\Omega}\).


Boolean function Minor quasi-order Hypergraph Designs Steiner systems Monomorphy 

Mathematics Subject Classifications (2010)

05C75 05C65 05B05 05B07 06A07 06E30 94C10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bondy, A., Murty, U.S.R.: Graph Theory, Series: Graduate Texts in Mathematics, vol. 244, XII, 652, p. 235 illus (2008)Google Scholar
  2. 2.
    Bouaziz, M., Couceiro, M., Pouzet, M.: Join-irreducible Boolean functions. In: Proceedings of International Conference on Relations, Orders and Graphs: Interaction with Computer Science (ROGICS’08), pp. 47–56. Mahdia, Tunisia. arXiv:0801.2939 (2008)
  3. 3.
    Buekenhout, F., Delandtsheer, A., Doyen, J.: Finite linear spaces with flag-transitive groups. J. Comb. Theory, Ser. A 49, 268–293 (1988)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Clapham, P.C.: Steiner triple systems with block-transitive automorphism groups. Discrete Math. 14, 121–131 (1976)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Couceiro, M., Foldes, S.: On closed sets of relational constraints and classes of functions closed under variable substitutions. Algebra Univers. 54, 149–165 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Couceiro, M., Foldes, S.: Functional equations, constraints, definability of function classes, and functions of Boolean variables. Acta Cybern. 18, 61–75 (2007)MATHMathSciNetGoogle Scholar
  7. 7.
    Couceiro, M., Lehtonen, E.: On the effect of variable identification on the essential arity of functions on finite sets. Int. J. Found. Comput. Sci. 18, 975–986 (2007)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Couceiro, M., Lehtonen, E.: Generalizations of Świerczkowski’s lemma and the arity gap of finite functions. Discrete Math. 309(20), 5905–5912 (2009)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Couceiro, M., Lehtonen, E.: On the arity gap of finite functions: results and applications. In: Proceedings of International Conference on Relations, Orders and Graphs: Interaction with Computer Science (ROGICS’08). Mahdia, Tunisia (2008)Google Scholar
  10. 10.
    Couceiro, M., Pouzet, M.: On a quasi-ordering on Boolean functions. Theor. Comput. Sci. 396, 71–87 (2008)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, 3rd edn, vol. 173. Springer, Heidelberg (2005)MATHGoogle Scholar
  12. 12.
    Ehrenfeucht, A., Harju, T., Rozenberg, G.: The Theory of 2-Structures. A Framework for Decomposition and Transformation of Graphs. World Scientific (1999)Google Scholar
  13. 13.
    Ekin, O., Foldes, S., Hammer, P.L., Hellerstein, L.: Equational characterizations of Boolean function classes. Discrete Math. 211, 27–51 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Foldes, S., Pogosyan, G.: Post classes characterized by functional terms. Discrete Appl. Math. 142, 35–51 (2004)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fraïssé, R.: Theory of Relations, 2nd edn, p. ii+451. North-Holland Publishing Co., Amsterdam (2000)MATHGoogle Scholar
  16. 16.
    Graham, R.L., Grötschel, M., Lovasz, L. (eds.): Handbook of Combinatorics, vol. I. Elsevier, Amsterdam. The MIT Press Cambridge (1995)Google Scholar
  17. 17.
    Hall, M., Jr.: Steiner triple systems with doubly transitive automorphism group. J. Comb. Theory, A 38, 192–202 (1985)MATHCrossRefGoogle Scholar
  18. 18.
    Hellerstein, L.: On generalized constraints and certificates. Discrete Math. 226, 211–232 (2001)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kantor, W.M.: 2-Transitive and Flag-Transitive Designs. Coding Theory, Design Theory, Group Theory (Burlington, VT, 1990), pp. 13–30. Wiley-Intersi. Publ., Wiley, New York (1993)Google Scholar
  20. 20.
    Key, J.D., Shult, E.E.: Steiner triple systems with doubly transitive automorphism groups: a corollary of the classification theorem for the finite simple groups. J. Comb. Theory, A 36, 105–110 (1984)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Muller, D.E.: Application of Boolean algebra to switching circuit design and to error correction. IRE Trans. Electron. Comput. 3(3), 6–12 (1954)Google Scholar
  22. 22.
    Pippenger, N.: Galois theory for minors of finite functions. Discrete Math. 254, 405–419 (2002)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Pogosyan, G.: Classes of Boolean functions defined by functional terms. Mult. Valued Log. 7, 417–448 (2002)MathSciNetGoogle Scholar
  24. 24.
    Reed, I.S.: A class of multiple-error-correcting codes and the decoding scheme. IRE Trans. Inf. Theory 4(4), 38–49 (1954)CrossRefGoogle Scholar
  25. 25.
    Salomaa, A.: On essential variables of functions, especially in the algebra of logic. Ann. Acad. Sci. Fenn. Ser. A I. Math. 339, 3–11 (1963)MathSciNetGoogle Scholar
  26. 26.
    Sumner, D.P.: Point determination in graphs. Discrete Math. 5, 179–187 (1973)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Zhegalkin, I.I.: On the calculation of propositions in symbolic logic. Mat. Sb. 34, 9–28 (1927, in Russian)Google Scholar
  28. 28.
    Zverovich, I.E.: Characterization of closed classes of Boolean functions in terms of forbidden subfunctions and post classes. Discrete Appl. Math. 149, 200–218 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Moncef Bouaziz
    • 1
  • Miguel Couceiro
    • 2
  • Maurice Pouzet
    • 3
    • 4
  1. 1.Institut Supérieur des Technologies Médicales de TunisTunisTunisie
  2. 2.Mathematics Research UnitUniversity of LuxembourgLuxembourgLuxembourg
  3. 3.ICJ, Department of MathematicsUniversité Claude-Bernard Lyon1Villeurbanne CedexFrance
  4. 4.Department of Mathematics and StatisticsThe University of CalgaryCalgaryCanada

Personalised recommendations