Advertisement

Order

, Volume 26, Issue 1, pp 69–94 | Cite as

Choice Functions and Extensive Operators

  • V. Danilov
  • G. Koshevoy
Article

Abstract

The paper puts forth a theory of choice functions in a neat way connecting it to a theory of extensive operators and neighborhood systems. We consider classes of heritage choice functions satisfying conditions M, N, W, and C, or combinations of these conditions. In terms of extensive operators these classes can be considered as generalizations of symmetric, anti-symmetric and transitive binary relations. Among these classes we meet the well-known classes of matroids and convex geometries. Using a ‘topological’ language we discuss these classes of monotone extensive operators (or heritage choice functions) in terms of neighborhood systems. A remarkable inversion on the set of choice functions is introduced. Restricted to the class of heritage choice functions the inversion turns out to be an involution, and under this involution the axiom N is auto-inverse, whereas the axioms W and M change places.

Keywords

Neighborhood system Pre-topology Matroid Anti-matroid Exchange and anti-exchange conditions Closure operator Direct image 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M.: Combinatorial Theory. Springer, Berlin (1979)MATHGoogle Scholar
  2. 2.
    Aizerman, M.A., Aleskerov, F.T.: Theory of Choice. North Holland, Amsterdam (1995)MATHGoogle Scholar
  3. 3.
    Aizerman, M.A., Zavalishin, N.V., Pyatnitsky, Ye.S.: Global functions of sets in the theory of alternative selection. Avtom. Telemeh. 38(3), 11–125 (1977)Google Scholar
  4. 4.
    Ando, K.: Extreme point axioms for closure spaces. Discrete Math. 303, 3181–3188 (2006)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Caspard, N., Monjardet, B.: The lattice of closure systems, closure operators and implicational systems on a finite set: a survey. Discrete Appl. Math. 127(2), 241–269 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Danilov, V., Koshevoy, G.: Mathematics of Plott choice functions. Math. Soc. Sci. 49, 245–272 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Demetrovics, J., Hencsey, G., Libkin, L., Muchnik, I.: On the interaction between closure operations and choice functions with applications to relational databases. Acta Cybern. 10(Nr.3), 129–139 (1992)MATHMathSciNetGoogle Scholar
  8. 8.
    Echenique, F.: Counting combinatorial choice rules. Games Econ. Behav. 58, 231–245 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Edelman, P.H.: Abstract convexity and meet-distribunive lattices. Contemp. Math. 57, 127–149 (1986)MathSciNetGoogle Scholar
  10. 10.
    Johnson, M.R., Dean, R.A.: Locally complete path independent choice functions and their lattices. Math. Soc. Sci. 42, 53–87 (2001)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Koshevoy, G.A.: Choice functions and abstract convex geometries. Math. Soc. Sci. 38, 35–44 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Litvakov, B.M.: Choice mechanisms using graph-multiple structures. Avtom. Telemeh. 9, 145–152 (1980)MathSciNetGoogle Scholar
  13. 13.
    Mirkin, B., Muchnik, I.: Induced layered clusters, hereditary mappings, and convex geometries. Appl. Math. Lett. 15, 293–298 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Monjardet, B., Raderanirina, V.: Lattices of choice functions and consensus problems. Soc. Choice Welf. 23, 349–382 (2004)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Moulin, H.: Choice functions over a finite sets: a summery. Soc. Choice Welf. 2, 147-160 (1985)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Muchnik, I., Shwartser, L.: Maximization of generalized characteristic of functions of monotone systems. Avtom. Telemeh. 51, 1562–1572 (1990)MATHGoogle Scholar
  17. 17.
    Nehring, K.: Rational choice and revealed preference without binariness. Soc. Choice Welf. 14, 403–425 (1997)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Central Institute of Economics and Mathematics of the RASMoscowRussia

Personalised recommendations