, Volume 25, Issue 1, pp 9–17 | Cite as

Approximating Orders in Meet-Continuous Lattices and Regularity Axioms in Many Valued Topology

  • Ulrich Höhle
  • Tomasz Kubiak


It is shown that in a meet-continuous lattice L endowed with a multiplicative auxiliary order ≺ the family of all members of L which satisfy the axiom of approximation, i.e. α = \(\bigvee\){βL : βα}, is closed under finite infs and arbitrary sups. This is a key ingredient of a meet-continuous lattice proof that both regularity and complete regularity of many valued topology have subbasic characterizations. As a consequence, the frame law can now be eliminated from some fundamental results on completely regular L-valued topological spaces (e.g., this is the case in regard to the Tychonoff embedding theorem).


Meet-continuous lattices Multiplicative auxiliary order L-valued topology Regularity Complete regularity L-cube 

Mathematics Subject Classifications (2000)

06B23 54A40 54D10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. John Wiley & Sons, New York (1990)MATHGoogle Scholar
  2. 2.
    Császár, Á.: Foundations of General Topology. Pergamon Press, Oxford (1963)Google Scholar
  3. 3.
    Dowker, C.H., Papert Strauss, D.: Separation axioms for frames. Colloquia Mathematica Societatis János Bolyai 8, 223–240 (1974). (Topics in Topology Keszthely (Hungary) 1972)Google Scholar
  4. 4.
    Engelking, R.: General Topology. Polish Sci. Publ., Warszawa (1977)Google Scholar
  5. 5.
    Gierz, G. Hofmann, K.H., Keimel, K., Lawson, J.D., Mislowe, M., Scott, D.S.: A Compendium of Continuous Lattices. Springer-Verlag, Berlin (1980)MATHGoogle Scholar
  6. 6.
    Höhle, U.: Many Valued Topology and Its Applications. Kluwer Academic Publ., Boston (2001)Google Scholar
  7. 7.
    Höhle, U., Šostak, A.P.: Axiomatic foundations of fixed-basis fuzzy topology. In: [8], pp. 123–272Google Scholar
  8. 8.
    Höhle, U., Rodabaugh, S.E. (eds.): Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory. The Handbooks of Fuzzy Sets Series 3. Kluwer Academic Publ., Boston (1999)Google Scholar
  9. 9.
    Hutton, B.: Uniformities on fuzzy topological spaces. J. Math. Anal. Appl. 58, 559–571 (1977)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Hutton, B., Reilly, I.L.: Separation axioms in fuzzy topological spaces. Fuzzy Sets Syst. 3, 93–104 (1980)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)MATHGoogle Scholar
  12. 12.
    Johnstone, P.T.: The point of pointless topology. Am. Math. Soc. 8, 41–53 (1983)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Kříž I., Pultr, A.: A spatiality criterion and an example of a quasitopology which is not a topology. Houst. J. Math. 15, 215–234 (1989)MATHGoogle Scholar
  14. 14.
    Kubiak, T.: On L-Tychonoff spaces. Fuzzy Sets Syst. 73, 25–53 (1995)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Kubiak, T.: Separation axioms: extension of mappings and embedding of spaces. In: [8], pp. 433–479Google Scholar
  16. 16.
    Kubiak, T., De Prada Vicente, M.A.: Some questions in fuzzy topology. Fuzzy Sets Syst. 105, 277–285 (1999)CrossRefMATHGoogle Scholar
  17. 17.
    Kubiak, T., De Prada Vicente, M.A.: L–regular topological spaces and their topological modification. Int. J. Math. Math. Sci. 23, 687–695 (2000)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Rodabaugh, S.E.: Applications of localic separation axioms, compactness axioms, representations, and compactifications to poslat topological spaces. Fuzzy Sets Syst. 73, 55–87 (1995)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Rodabaugh, S.E.: Separation axioms, representation theorems, compactness, and compactifications. In: [8], pp. 481–551Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Fachbereich C Mathematik und NaturwissenschaftenBergische UniversitätWuppertalGermany
  2. 2.Wydział Matematyki i InformatykiUniwersytet im. Adama MickiewiczaPoznańPoland

Personalised recommendations