Advertisement

Order

, Volume 23, Issue 2–3, pp 197–209 | Cite as

A Bipartite Analogue of Dilworth’s Theorem

  • Jacob Fox
Article

Abstract

Let m(n) be the maximum integer such that every partially ordered set P with n elements contains two disjoint subsets A and B, each with cardinality m(n), such that either every element of A is greater than every element of B or every element of A is incomparable with every element of B. We prove that \(m(n)=\Theta\left(\frac{n}{\log n}\right)\). Moreover, for fixed ε ∈ (0,1) and n sufficiently large, we construct a partially ordered set P with n elements such that no element of P is comparable with \(n^{\varepsilon } \) other elements of P and for every two disjoint subsets A and B of P each with cardinality at least \(\frac{14n}{\epsilon\log_2 n}\), there is an element of A that is comparable with an element of B.

Key words

Dilworth’s theorem Ramanujan graph convex compact sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N.: Eigenvalues and expanders. Theory of computing (Singer Island, Fla., 1984). Combinatorica 6(2), 83–96 (1986)MATHMathSciNetGoogle Scholar
  2. 2.
    Alon, N.: Ramsey graphs cannot be defined by real polynomials. J. Graph Theory 14(6), 651–661 (1990)MATHMathSciNetGoogle Scholar
  3. 3.
    Alon, N., Milman, V.D.: \(\lambda\sb 1,\) isoperimetric inequalities for graphs, and superconcentrators. J. Comb. Theory Ser. B 38(1), 73–88 (1985)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Alon, N., Pach, J., Pinchasi, R., Radoičić, R., Sharir, M.: Crossing patterns of semi-algebraic sets. J. Comb. Theory Ser A 111, 310-326 (2005)MATHCrossRefGoogle Scholar
  5. 5.
    Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Simulating independence: new constructions of condensers, Ramsey graphs, dispersers and extractors. In: Proc. of the 37th ACM STOC, pp. 1–10 (2005)Google Scholar
  6. 6.
    Benczúr, A., András, A., Förster, J., Király, Z.: Dilworth’s theorem and its application for path systems of a cycle — implementation and analysis. Algorithms – ESA ’99 (Prague). Lecture Notes Computer Science, vol. 1643, pp. 498–509. Springer, Berlin Heidelberg New York (1999)Google Scholar
  7. 7.
    Berge, C.: Les problèmes de coloration en théorie des graphes. Publ. Inst. Stat. Univ. Paris 9, 123–160 (1960)MATHMathSciNetGoogle Scholar
  8. 8.
    Chiu, P.: Cubic Ramanujan graphs. Combinatorica 12(3), 275–285 (1992)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229.Google Scholar
  10. 10.
    Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51(2), 161–166 (1950)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Erdős, P., Hajnal, A., Pach, J.: Ramsey-type theorem for bipartite graphs. Geombinatorics 10, 64–68 (2000)MathSciNetGoogle Scholar
  12. 12.
    Erdős, P., Komlós, J.: On a problem of Moser. Combinatorial theory and its applications, I. (Proc. Colloq., Balatonfüred, 1969), pp. 365–367. North-Holland, Amsterdam (1970)Google Scholar
  13. 13.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)Google Scholar
  14. 14.
    Fox, J., Pach, J.: A bipartite analogue of Dilworth’s theorem for multiple partial orders, preprint.Google Scholar
  15. 15.
    Gessel, I., Rota, G-C (ed.): Classic Papers in Combinatorics. Birkhauser Boston, MA (1987)MATHGoogle Scholar
  16. 16.
    Graham, R.L., Rothschild, B.L., Spencer, J.: Ramsey Theory, 2nd edn. John Wiley, New York (1990)MATHGoogle Scholar
  17. 17.
    Greene, C., Kleitman, D.J.: The structure of Sperner k-families. J. Comb. Theory Ser. A. 20(1), 41–68 (1976)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Larman, D., Matoušek, J., Pach, J., Töröcsik, J.: A Ramsey-type result for convex sets. Bull. Lond. Math. Soc. 26(2), 132–136 (1994)MATHGoogle Scholar
  19. 19.
    Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Matoušek, J., Welzl, E.: Good splitters for counting points in triangles. J. Algorithms 13(2), 307–319 (1992)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Morgenstern, M.: Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime power q. J. Comb. Theory Ser. B. 62(1), 44–62 (1994)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Murty, M.R.: Ramanujan graphs. J. Ramanujan Math. Soc. 18(1), 1–20 (2003)MATHMathSciNetGoogle Scholar
  23. 23.
    Pach, J., Solymosi, J.: Crossing patterns of segments. J. Comb. Theory Ser. A. 96, 316–325 (2001)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Pach, J., Törőcsik, J.: Some geometric applications of Dilworth’s theorem. Discrete Comput. Geom. 12(1), 1–7 (1994)MATHMathSciNetGoogle Scholar
  25. 25.
    Pach, J., Tóth, G.: Comments on Fox News. Geombinatorics 15, 150–154 (2006)MATHMathSciNetGoogle Scholar
  26. 26.
    Pudlák, P., Rödl, V.: Pseudorandom sets and explicit constructions of Ramsey graphs. Complexity of computations and proofs. Quad. Mat. 13, 327–346, Dept. Math., Seconda Univ. Napoli, Caserta, Italy (2004)MATHGoogle Scholar
  27. 27.
    Seinsche, D.: On a property of the class of n-colorable graphs. J. Comb. Theory Ser. B. 16, 191–193 (1974)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Tietze, H.: Über das Problem der Nachbargeibiete im Raum. Monatshefte Math. 16, 211–216 (1905)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Tóth, G., Valtr, P.: Geometric graphs with few disjoint edges. 14th Annual ACM Symposium on Computational Geometry, Minneapolis, MN, 1998. Discrete Comput. Geom. 22(4), 633–642 (1999)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Trotter, W.T.: Combinatorics and Partially Ordered Sets. Dimension Theory. Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD 1992Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations