Skip to main content
Log in

High-performance normally off p-GaN gate high-electron-mobility transistor with In0.17Al0.83N barrier layer design

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a novel normally-off p-GaN gate InAlN/GaN HEMT to replace p-GaN gate AlGaN/GaN HEMT for improving the device stability, enhancing saturation current, reducing the on-state resistance, improving the cut off frequency and decreasing the subthreshold swing. Due to the higher two-dimensional electron gas induced by the polarization, the on-state resistance for p-GaN gate InAlN HEMT can be lowered by 23% while the on-state current can be enhanced by 161% comparing with the common p-GaN gate AlGaN HEMT at Vgs = 5 V. The cut off frequency of InAlN HEMT is 11.5 GHz, which is 39% higher than that of AlGaN HEMT. While the low breakdown voltage (BV) of InAlN HEMT restricts the device performance and power application. The thickness and permittivity of the passivation layer are found to influence the BV of the device significantly, due to the alleviation of peak electric field at the drain-side gate edge, leading to a much smoother distribution of electric field in the channel. A proposed structure with TiO2 passivation layer exhibits a breakdown of 1028 V, showing 25% increase in breakdown voltage compared to the TiO2 passivation layer AlGaN HEMT. These simulation results revealed that the p-GaN gate InAlN/GaN HEMT is a reliable candidate in power application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cai, Y., Chen, Z., Yang, Z., Tang, C.W., Lau, K.M., Chen, K.J.: High-temperature operation of AlGaN/GaN HEMTs direct-coupled FET logic (DCFL) integrated circuits. IEEE Electron Dev. Lett. 28(5), 328–331 (2007)

    Article  ADS  Google Scholar 

  • Cai, Q., Luo, W.K., Li, Q., Li, M., Chen, D.J., Lu, H., Zhang, R., Zheng, Y.D.: AlGaN ultraviolet avalanche photodiodes based on a triple-mesa structure. Appl. Phys. Lett. 113(12), 123503 (2018)

    Article  ADS  Google Scholar 

  • Cui, Z., Ren, K., Zhao, Y.M., Wang, X., Shu, H.B., Yu, J., Tang, W.C., Sun, M.L.: Electronic and optical properties of van der Waals heterostructures of g-GaN and transition metal dichalcogenides. Appl. Surf. Sci. 492, 513–519 (2019)

    Article  ADS  Google Scholar 

  • Cui, Z., Wang, X., Ding, Y.C., Li, E.L., Bai, K.F., Zheng, J.S., Liu, T.: Adsorption of CO, NH3, NO, and NO2 on pristine and defective g-GaN: improved gas sensing and functionalization. Appl. Surf. Sci. 530, 147275 (2020a)

    Article  Google Scholar 

  • Cui, P., Zhang, J., Yang, T.Y., Chen, H., Zhao, H.C., Lin, G.Y., Wei, L.C., Xiao, J.Q., Chueh, Y.L., Zeng, Y.P.: Effects of N2O surface treatment on the electrical properties of the InAlN/GaN high electron mobility transistors. J. Phys. D Appl. Phys. 53(6), 065103 (2020b)

    Article  ADS  Google Scholar 

  • Feng, Q., Li, Q., Xing, T., Wang, Q., Zhang, J.C., Hao, Y.: Performance of La2O3/InAlN/GaN metal-oxide-semiconductor high electron mobility transistors. Chin. Phys. B 21(6), 067305 (2012)

    Article  ADS  Google Scholar 

  • Gu, Y., Chang, D.M., Sun, H.Y., Zhao, J.C., Yang, G.F., Dai, Z.C., Ding, Y.: Theoretical study of inaln/gan high electron mobility transistor (hemt) with a polarization-graded algan back-barrier layer. Electronics 8(8), 885 (2019)

    Article  Google Scholar 

  • Huang, H., Liang, Y.C., Samudra, G.S., Ngo, C.L.L.: Au-free normally-off AlGaN/GaN-on-Si MIS-HEMTs using combined partially recessed and fluorinated trap-charge gate structures. IEEE Electron Dev. Lett. 35(5), 569–571 (2014)

    Article  ADS  Google Scholar 

  • Huang, S., Liu, X.Y., Wang, X.H., Kang, X.W., Zhang, J.H., Bao, Q.L.: High uniformity normally-OFF GaN MIS-HEMTs fabricated on ultra-thin-barrier AlGaN/GaN heterostructure. IEEE Electron Dev. Lett. 37(12), 1617–1620 (2016)

    Article  ADS  Google Scholar 

  • Jia, X.Y., Chen Huang, S.W., Liu, Y.J., Hou, X., Zhang, Y.H., Zhang, Z.H., Kuo, H.C.: Design strategies for mesa-type gan-based schottky barrier diodes for obtaining high breakdown voltage and low leakage current. IEEE Trans. Electron Dev. 67(5), 1931–1938 (2020)

    Article  ADS  Google Scholar 

  • Kanamura, M., Ohki, T., Kikkawa, T., Imanishi, K., Imada, T., Yamada, A., Hara, N.: Enhancement-mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN triple cap layer and high-gate dielectrics. IEEE Electron Dev. Lett. 31(3), 189–191 (2010)

    Article  ADS  Google Scholar 

  • Li, X.T., Cui, M., Liu, W.: A full GaN-integrated sawtooth generator based on enhancement-mode AlGaN/GaN MIS-HEMT for GaN power converters. In: International Conference on IC Design and Technology, p. 2381 (2019)

  • Lin, Y.S., Lu, C.C.: Improved AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors with TiO2 gate dielectric annealed in nitrogen. IEEE Trans. Electron Dev. 65(2), 783–787 (2018)

    Article  ADS  Google Scholar 

  • Ma, X.H., Pan, C.Y., Yang, L.Y., Yu, H.Y., Yang, L., Quan, S., Wang, H., Zhang, J.C., Hao, Y.: Characterization of Al2O3/GaN/AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors with different gate recess depths. Chin. Phys. B 20(2), 027304 (2011)

    Article  ADS  Google Scholar 

  • Mi, M.H., Zhang, M., Wu, S., Yang, L., Hou, B., Zhou, Y.W., Guo, L.X., Ma, X.H., Hao, Y.: High performance InAlN/GaN high electron mobility transistors for low voltage applications. Chin. Phys. B 29(5), 057307 (2020)

    Article  ADS  Google Scholar 

  • Oguzman, I.H., Bellotti, E., Brennan, K.F., Kolnik, J., Wang, R., Ruden, P.P.: Theory of hole initiated impact ionization in bulk zincblende and wurtzite GaN. J. Appl. Phys. 81(12), 7827–7834 (1997)

    Article  ADS  Google Scholar 

  • Ohi, K., Asubar, J.T., Nishiguchi, K., Hashizume, T.: Current stability in multi-mesa-channel AlGaN/GaN HEMTs. IEEE Trans. Electron Dev. 60(10), 2997–3004 (2013)

    Article  ADS  Google Scholar 

  • Piprek, J.: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Academic Press, Cambridge (2003)

    Google Scholar 

  • Rawat, A., Surana, V.K., Ganguly, S., Saha, D.: Tensile strain and fermi level alignment in thermally grown TiO2 and Al2O3 based AlGaN/GaN MOS-HEMTs. Solid-State Electron. 164, 107702 (2019)

    Article  Google Scholar 

  • Tallarico, A.N., Stoffels, S., Posthuma, N., Bakeroot, B., Decoutere, S., Sangiorgi, E., Fiegna, C.: Gate reliability of p-GaN HEMT with gate metal retraction. IEEE Trans. Electron Dev. 66(11), 4829–4835 (2019)

    Article  ADS  Google Scholar 

  • Tang, Z., Jiang, Q., Lu, Y., Huang, S., Yang, S., Tang, X., Chen, K.J.: 600-V normally off/AlGaN/GaN MIS-HEMT with large gate swing and low current collapse. IEEE Electron Dev. Lett. 34(11), 1373–1375 (2013)

    Article  ADS  Google Scholar 

  • Tang, Z.K., Huang, S., Tang, X., Li, B., Chen, K.J.: Influence of AlN passivation on dynamic ON-resistance and electric field distribution in high-voltage AlGaN/GaN-on-Si HEMTs. IEEE Trans. Electron Dev. 61(8), 2785–2792 (2014)

    Article  ADS  Google Scholar 

  • Touati, Z., Hamaizia, Z., Messai, Z.: Study of AlGaN/GaN MOS-HEMTs with TiO2 gate dielectric and regrown source/drain. J. New Tech. Mater. 8(2), 16–23 (2018)

    Google Scholar 

  • Tsukui, M., Iyechika, Y., Nago, H., Takahashi, H.: Uniformity and repeatability of InAlN-barrier HEMTs growth by high-speed-rotation single-wafer MOCVD tool. J. Cryst. Growth 509, 103–106 (2019)

    Article  ADS  Google Scholar 

  • Wang, J., You, H.F., Guo, H., Xue, J.J., Yang, G.F., Chen, D.J., Liu, B., Lu, H., Zhang, R., Zheng, Y.D.: Do all screw dislocations cause leakage in GaN-based devices? Appl. Phys. Lett. 116(6), 062104 (2020a)

    Article  ADS  Google Scholar 

  • Wang, J., Guo, H., Zhu, C.Z., Cai, Q., Yang, G.F., Xue, J.J., Chen, D.J., Tong, Y., Liu, B., Lu, H., Zhang, R., Zheng, Y.D.: ε-GaO: a promising candidate for high-electron-mobility transistors. IEEE Electron Dev. Lett. 41(7), 1052–1055 (2020b)

    Article  Google Scholar 

  • Yue, Y.Z., Hao, Y., Zhang, J.C., Feng, Q.: A study on Al2O3 passivation in GaN MOS-HEMT by pulsed stress. Chin. Phys. B 17(4), 1405–1409 (2009)

    Google Scholar 

  • Zhang, Y., Sun, M., Jolekar, S.J., Fujishima, T.: Threshold voltage control by gate oxide thickness in fluorinated GaN metal-oxide-semiconductor high-electron-mobility transistors. Appl. Phys. Lett. 103(3), 033524 (2013)

    Article  ADS  Google Scholar 

  • Zhao, S.L., Zhang, K., Ha, W., Chen, Y.H., Zhang, P., Zhang, J.C., Ma, X.H., Hao, Y.: Trap states in AlGaN channel high-electron-mobility transistors. Appl. Phys. Lett. 103(21), 212106 (2013)

    Article  ADS  Google Scholar 

  • Zhou, Q., Chen, H.W., Zhou, C.H., Feng, Z.H., Cai, S.J., Chen, K.J.: Schottky source/drain InAlN/AlN/GaN MISHEMT with enhanced breakdown voltage. IEEE Electron Dev. Lett. 33(1), 38–40 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Project supported by the National Natural Science Foundation of China under Grant No. 61704016, the technology Innovation and Application Demonstration key Project of Chongqing Municipality under Grant No. cstc2019jszx-zdztzxX0005, Natural Science Foundation of Jiangsu Province under Grant No. BK20200094 and the Zhejiang Lab's International Talent Fund for Young Professionals.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Wang or Junjun Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, J., Chen, W. et al. High-performance normally off p-GaN gate high-electron-mobility transistor with In0.17Al0.83N barrier layer design. Opt Quant Electron 53, 139 (2021). https://doi.org/10.1007/s11082-021-02786-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02786-2

Keywords

Navigation