A novel design of all optical half-subtractor using a square lattice photonic crystals

Abstract

In this research, an all-optical half-subtractor is designed and simulated using two-dimensional photonic crystals. First, a photonic crystal structure is created using Si rods in the air context to obtain the optical half-subtractor. Afterward, using point and line defects, two waveguides are created for the input and two waveguides are created for the outputs. A high logical value and a low logical value are defined based on the optical power in each port. The FDTD method is used in the simulation of light propagation in the structure. The simulation results show that the designed half-subtractor has high optical power values for logic “1” and low values for logic “0”. The small size of the designed structure is among the advantages of this structure. Moreover, given that this half-subtractor is devoid of ring resonators, it can be used in high-speed integrated optical circuits. Another advantage of the proposed half-subtractor is that the optical powers in the outputs are similar in the high and low optical states.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdollahi, M., Parandin, F.: A novel structure for realization of an all-optical, one-bit half-adder based on 2D photonic crystals. J. Comput. Electron. 18, 1416–1422 (2019)

    Article  Google Scholar 

  2. Askarian, A., Akbarizadeh, G., Fartash, M.: A novel proposal for all optical half-subtractor based on photonic crystals. Opt. Quant. Electron. 51, 264 (2019a). https://doi.org/10.1007/s11082-019-1978-6

    Article  Google Scholar 

  3. Askarian, A., Akbarizadeh, G., Fartash, M.: All-optical half-subtractor based on photonic crystals. Appl. Opt. 58, 5931–5935 (2019b)

    ADS  Article  Google Scholar 

  4. Askarian, A., Akbarizadeh, G., Fartash, M.: An all-optical half subtractor based on Kerr effect and photonic crystals. Optik. Int. J. Light Electron Optics 207, 164424 (2020). https://doi.org/10.1016/j.ijleo.2020.164424

    Article  Google Scholar 

  5. Bao, J., Xiao, J., Fan, L., Li, X., Hai, Y., Zhang, T., Yang, C.: All-optical NOR and NAND gates based on photonic crystal ring resonator. Opt. Commun. 329, 109–112 (2014)

    ADS  Article  Google Scholar 

  6. Huang, Z., Zheng, H., Guo, L., et al.: Influence of the position of artificial boundary on computation accuracy of conjugated infinite element for a finite length cylindrical shell. Acoust. Aust. 48, 287–294 (2020)

    Article  Google Scholar 

  7. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    ADS  Article  Google Scholar 

  8. Johnson, S.G., Villeneuve, P.R., Fan, S., Joannopoulos, J.D.: Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62(12), 8212–8222 (2000)

    ADS  Article  Google Scholar 

  9. Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. Photon Netw. Commun. 33, 159–165 (2017)

    Article  Google Scholar 

  10. Kumar, M., Prasad, S.: Mid-infrared biosensor based on bloch surface mode excitation in truncated one-dimensional ternary photonic crystal under kretschmann configuration. Plasmonics (2021). https://doi.org/10.1007/s11468-020-01331-3

    Article  Google Scholar 

  11. Li, H., Ma, B.: Research development on fabrication and optical properties of nonlinear photonic crystals. Front. Optoelectron. 13, 35–49 (2020)

    Article  Google Scholar 

  12. Li, C., Xue, Q., Ji, Z., Li, Y., Zhang, H., Li, D.: Construction of photonic crystals with thermally adjustable pseudo-gaps. Soft Matter 12, 3063–3068 (2020)

    ADS  Article  Google Scholar 

  13. Mohebzadeh-Bahabady, A., Olyaee, S.: All-optical NOT and XOR logic gates using photonic crystal nano-resonator and based on an interference effect. IET Optoelectron. 12(4), 191–195 (2018)

    Article  Google Scholar 

  14. Moradi, R.: All optical half subtractor using photonic crystal based onlinear ring resonators. Opt. Quant. Electron. 51, 119 (2019). https://doi.org/10.1007/s11082-019-1831-y

    Article  Google Scholar 

  15. Neisy, M., Soroosh, M., Ansari-Asl, K.: All optical half adder based on photonic crystal resonant cavities. Photon Netw. Commun. 35, 245–250 (2018)

    Article  Google Scholar 

  16. Olyaee, S., Taghipour, F.: Design of new square-lattice photonic crystal fibers for optical communication applications. Int. J. Physical Sci. 6(18), 4405–4411 (2011)

    Google Scholar 

  17. Olyaee, S., Naraghi, A., Ahmadi, V.: High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Optik Int. J. Light Electron Opt. 125(1), 596–600 (2014)

    Article  Google Scholar 

  18. Olyaee, S., Seifouri, M., Mohebzadeh-Bahabady, A., et al.: Realization of all-optical NOT and XOR logic gates based on interference effect with high contrast ratio and ultra-compacted size. Opt. Quant. Electron 50(11), 385 (2018). https://doi.org/10.1007/s11082-018-1654-2

    Article  Google Scholar 

  19. Parandin, F.: High contrast ratio all-optical 4 × 2 encoder based on two-dimensional photonic crystals. Opt. Laser Technol. 113, 447–452 (2019)

    ADS  Article  Google Scholar 

  20. Parandin, F., Karkhanehchi, M.M.: Terahertz all-optical NOR and AND logic gates based on 2D photonic crystals. Superlattices Microstruct. 101, 253–260 (2017)

    ADS  Article  Google Scholar 

  21. Parandin, F., Malmir, M.R.: Reconfigurable all optical half adder and optical XOR and AND logic gates based on 2D photonic crystals. Opt. Quant. Electron. 52, 56 (2020a). https://doi.org/10.1007/s11082-019-2167-3

    Article  Google Scholar 

  22. Parandin, F., Malmir, M.R.: Low Delay Time All Optical NAND, XNOR and OR Logic Gates Based on 2D Photonic Crystal Structure. J. Electr. Comp. Eng. Innovat. 8(1), 1–8 (2020b)

    Google Scholar 

  23. Parandin, F., Moayed, M.: Designing and simulation of 3-input majority gate based on two-dimensional photonic crystals. Optik Int. J. Light Electron Opt. 216, 164930 (2020). https://doi.org/10.1016/j.ijleo.2020.164930

    Article  Google Scholar 

  24. Parandin, F., Malmir, M.R., Naseri, M.: All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals. Superlattices Microstruct. 109, 437–441 (2017)

    ADS  Article  Google Scholar 

  25. Parandin, F., Malmir, M.R., Naseri, M., Zahedi, A.: Reconfigurable all-optical NOT, XOR, and NOR logic gates based on two dimensional photonic crystals. Superlattices Microstruct. 113, 737–744 (2018a)

    ADS  Article  Google Scholar 

  26. Parandin, F., Karkhanehchi, M.M., Naseri, M., Zahedi, A.: Design of a high bitrate optical decoder based on photonic crystals. J. Comput. Electron. 17, 830–836 (2018b)

    Article  Google Scholar 

  27. Qian, J., Feng, S., Tao, T., Hu, Y., Li, Y., Chen, Q., Zuo, C.: Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement. APL Photon. 5, 046105 (2020). https://doi.org/10.1063/5.0003217

    ADS  Article  Google Scholar 

  28. Qiu, T., Shi, X., Wang, J., Li, Y., Qu, S., Cheng, Q., Cui, T., Sui, S.: Deep learning: a rapid and efficient route to automatic meta surface design. Adv. Sci. 6(12), 1900128 (2019). https://doi.org/10.1002/advs.201900128

    Article  Google Scholar 

  29. Rathi, S., Swarnakar, S., Kumar, S.: Design of one-bit magnitude comparator using photonic crystals. J. Opt. Commun. 40(4), 363–367 (2017)

    Article  Google Scholar 

  30. Saghaei, H., Zahedi, A., Karimzadeh, R., Parandin, F.: Line defects on photonic crystals for the design of all-optical power splitters and digital logic gates. Superlattices Microstruct. 110, 133–138 (2017)

    ADS  Article  Google Scholar 

  31. Seifouri, M., Olyaee, S., Sardari, M., Mohebzadeh-Bahabady, A.: Ultra-fast and compact all-optical half adder using 2D photonic crystals. IET Optoelectron. 13(3), 139–143 (2019)

    Article  Google Scholar 

  32. Venugopalan, P., Mousavi, N.S.S., Dabirian, A., Kumar, S.: Ultrasensitive biosensing based on plasmonic nanostructures. In: Proc. SPIE 11201, SPIE Micro + Nano Materials, Devices, and Applications, 112011A (2019). https://doi.org/10.1117/12.2541278

  33. Wang, P., Zhang, X., Duan, W., Teng, W., Liu, Y., Xie, Q.: Super hydrophobic flexible super capacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin. J. Chem. 39, (2020). https://doi.org/10.1002/cjoc.202000543

  34. Wei, Z., Chen, W., Wang, Z., Li, N., Zhang, P., Zhang, M., Zhao, L., Qiang, Q.: High-temperature persistent luminescence and visual dual-emitting optical temperature sensing in self-activated CaNb2O6: Tb3+ phosphor. J Am Ceramic Soc (2020). https://doi.org/10.1111/jace.17579

    Article  Google Scholar 

  35. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    ADS  Article  Google Scholar 

  36. Yang, D., Tian, H., Ji, Y.: Nanoscale low crosstalk photonic crystal integrated sensor Array. IEEE Photon. J. 6, 1–7 (2014)

    Google Scholar 

  37. Zahedi, A., Parandin, F., Karkhanehchi, M.M., Habibi-Shams, H., Rajamand, S.: Design and simulation of optical 4-channel demultiplexer using photonic crystals. J. Opt. Commun. 40(1), 17–20 (2017)

    Article  Google Scholar 

  38. Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope. IEEE Trans. Comput. Imag. 6, 697–710 (2020)

    Article  Google Scholar 

  39. Zhu, W., Zhang, Z., Chen, D., et al.: Interfacial voids trigger carbon-based all-inorganic CsPbIBr 2 perovskite solar cells with photovoltage exceeding 1.33 V. Nano-Micro Lett. 12, 87 (2020). https://doi.org/10.1007/s40820-020-00425-1

    ADS  Article  Google Scholar 

  40. Zuo, C., Chen, Q., Gu, G., Feng, S., Feng, F., Li, R., Shen, G.: High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,. Opt. Lasers Eng. 51(8), 953–960 (2013)

    Article  Google Scholar 

  41. Zuo, C., Chen, Q., Tian, L., Waller, L., Asundi, A.: Transport of intensity phase etrieval and computational imaging for partially coherent fields: the phase space perspective. Opt. Lasers Eng. 71, 20–32 (2015)

    Article  Google Scholar 

  42. Zuo, C., Li, J., Sun, J., Fan, Y., Zhang, J., Lu, L., Zhang, R., Wang, B., Huang, L., Chen, Q.: Transport of intensity equation: a tutorial. Opt. Lasers Eng. 135, 106187 (2020a). https://doi.org/10.1016/j.optlaseng.2020.106187

    Article  Google Scholar 

  43. Zuo, C., Sun, J., Li, J., Asundi, A., Chen, Q.: Wide-field high-resolution 3D microscopy with fourier ptychographic diffraction tomography. Opt. Lasers Eng. 128, 106003 (2020b). https://doi.org/10.1016/j.optlaseng.2020.106003

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fariborz Parandin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parandin, F., Kamarian, R. & Jomour, M. A novel design of all optical half-subtractor using a square lattice photonic crystals. Opt Quant Electron 53, 114 (2021). https://doi.org/10.1007/s11082-021-02772-8

Download citation

Keywords

  • Photonic crystal
  • Optical half-subtractor
  • PBG
  • Defect