A multi-band absorber based on a dual-trident structure for sensing application

Abstract

Multi-band metamaterial absorbers (MMAs) are widely used in detecting and sensing fields to achieve selective frequency detection. In this study, a triple-narrowband absorber based on a symmetrical dual-trident structure is numerically designed for high absorption and sensing applications in the terahertz region. Simulation results show that the maximum absorptivity of three distinctive narrow-band absorption peaks is up to 99.94% and any of the three resonance frequencies can be utilized for bio-sensing. According to bio-sensing detection, the proposed sensor can simultaneously detect the thickness and refractive index of an unknown layer by utilizing different frequency shifts of the three resonance absorption peaks. The deviation of RI and thickness is 0.075 and zero, respectively. Results show that such a simple designed absorber could provide a desirable promising for terahertz-wave absorption and sensing applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abadla, M.M., Elsayed, H.A.: Detection and sensing of hemoglobin using one-dimensional binary photonic crystals comprising a defect layer. Appl. Opt. 59(2), 418–424 (2020)

    ADS  Article  Google Scholar 

  2. Abd El-Aziz, O.A., Elsayed, H.A., Sayed, M.I.: One-dimensional defective photonic crystals for the sensing and detection of protein. Appl. Opt. 58(30), 8309–8315 (2019)

    ADS  Article  Google Scholar 

  3. Bhattacharyya, S., Ghosh, S., Vaibhav Srivastava, K.: Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. J. Appl. Phys. 114(9), 094514 (2013)

    ADS  Article  Google Scholar 

  4. Bu, T., Chen, K., Liu, H., Liu, J., Hong, Z., Zhuang, S.: Location-dependent metamaterials in terahertz range for reconfiguration purposes. Photonics Res. 4(3), 122–125 (2016)

    Article  Google Scholar 

  5. Chen, T., Zhao, R., Wang, B.-X.: Theoretical investigation of a simple design of triple-band terahertz metamaterial absorber for high-Q sensing. Appl. Sci. 9(7), 1410 (2019)

    Article  Google Scholar 

  6. Cheng, Y., Zou, H., Yang, J., Mao, X., Gong, R.: Dual and broadband terahertz metamaterial absorber based on a compact resonator structure. Opt. Mater. Express 8(10), 3104–3114 (2018)

    ADS  Article  Google Scholar 

  7. Cong, L., Tan, S., Yahiaoui, R., Yan, F., Zhang, W., Singh, R.: Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces. Appl. Phys. Lett. 106(3), 031107 (2015)

    ADS  Article  Google Scholar 

  8. Deng, G., Chen, P., Yang, J., Yin, Z., Qiu, L.: Graphene-based tunable polarization sensitive terahertz metamaterial absorber. Opt. Commun. 380, 101–107 (2016)

    ADS  Article  Google Scholar 

  9. Duan, G., Schalch, J., Zhao, X., Zhang, J., Averitt, R.D., Zhang, X.: An air-spaced terahertz metamaterial perfect absorber. Sensors Actuators A Phys. 280, 303–308 (2018)

    Article  Google Scholar 

  10. Elsayed, H.A., Mehaney, A.: A new method for glucose detection using the one dimensional defective photonic crystals. Mater. Res. Express 6(3), 036201 (2018)

    ADS  Article  Google Scholar 

  11. Elsayed, H.A., Mehaney, A.: Theoretical verification of photonic crystals sensor for biodiesel detection and sensing. Phys. Scr. 95(8), 085507 (2020)

    ADS  Article  Google Scholar 

  12. Janneh, M., De Marcellis, A., Palange, E., Tenggara, A., Byun, D.: Design of a metasurface-based dual-band Terahertz perfect absorber with very high Q-factors for sensing applications. Opt. Commun. 416, 152–159 (2018)

    ADS  Article  Google Scholar 

  13. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    ADS  Article  Google Scholar 

  14. Ling, X., Xiao, Z., Zheng, X.: Tunable terahertz metamaterial absorber and the sensing application. J. Mater. Sci. Mater. Electron. 29(2), 1497–1503 (2018)

    Article  Google Scholar 

  15. Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010)

    ADS  Article  Google Scholar 

  16. Park, S., Hong, J., Choi, S., Kim, H., Park, W., Han, S., Park, J., Lee, S., Kim, D., Ahn, Y.: Detection of microorganisms using terahertz metamaterials. Sci. Rep. 4, 4988 (2014)

    ADS  Article  Google Scholar 

  17. Ren, Z.: Design of dual narrow-band terahertz absorber based on metamaterials. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, p. 022096 (2019).

  18. Sabah, C., Mulla, B., Altan, H., Ozyuzer, L.: Cross-like terahertz metamaterial absorber for sensing applications. Pramana 91(2), 17 (2018)

    ADS  Article  Google Scholar 

  19. Seddon, N., Bearpark, T.: Observation of the inverse Doppler effect. Science 302(5650), 1537–1540 (2003)

    ADS  Article  Google Scholar 

  20. Shao, K., Shu, L., Wang, Q., Liu, M., Tian, Q., and Hu, W.: Quantum Stealth Technology. J. Org. Chem. Res. 3, 66–76 (2015)

  21. Shelby, R.A., Smith, D.R., Schultz, S.J.S.: Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001)

    ADS  Article  Google Scholar 

  22. Shen, X., Cui, T., Zhao, J., Ma,H., Jiang, W., Li, H.: Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Exp. 19(10), 9401–9407(2011)

  23. Shen, X., Yang, Y., Zang, Y., Gu, J., Han, J., Zang, W., Cui, T.: Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl. Phys. Lett. 101(15), 154102 (2012)

  24. Srivastava, Y.K., Cong, L., Singh, R.: Dual-surface flexible THz Fano metasensor. Appl. Phys. Lett. 111(20), 201101 (2017)

    ADS  Article  Google Scholar 

  25. Srivastava, Y.K., Ako, R.T., Gupta, M., Bhaskaran, M., Sriram, S., Singh, R.: Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Appl. Phys. Lett. 115(15), 151105 (2019)

    ADS  Article  Google Scholar 

  26. Wang, B.-X., Wang, G.-Z.: New type design of the triple-band and five-band metamaterial absorbers at terahertz frequency. Plasmonics 13(1), 123–130 (2018)

    Article  Google Scholar 

  27. Wang, B.-X., Zhai, X., Wang, G.-Z., Huang, W.-Q., Wang, L.-L.: A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys. 117(1), 014504 (2015)

    ADS  Article  Google Scholar 

  28. Wang, B.-X., Wang, G.-Z., Sang, T.: Simple design of novel triple-band terahertz metamaterial absorber for sensing application. J. Phys. D Appl. Phys. 49(16), 165307 (2016)

    ADS  Article  Google Scholar 

  29. Wang, W., Wang, K., Yang, Z., Liu, J.: Experimental demonstration of an ultra-flexible metamaterial absorber and its application in sensing. J. Phys. D Appl. Phys. 50(13), 135108 (2017)

    ADS  Article  Google Scholar 

  30. Watts, C.M., Shrekenhamer, D., Montoya, J., Lipworth, G., Hunt, J., Sleasman, T., Krishna, S., Smith, D.R., Padilla, W.J.: Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8(8), 605–609 (2014)

    ADS  Article  Google Scholar 

  31. Xu, Z.-C., Wu, L., Zhang, Y.-T., Xu, D.-G., Yao, J.-Q.: Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies. Chin. Phys. Lett. 36(12), 124202 (2019)

    ADS  Article  Google Scholar 

  32. Yahiaoui, R., Tan, S., Cong, L., Singh, R., Yan, F., Zhang, W.: Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J. Appl. Phys. 118(8), 083103 (2015)

    ADS  Article  Google Scholar 

  33. Yao, Y., Li, S., Zhu, L., Wu, F., He, X., Jiang, J.: Multi-band terahertz metamaterial absorber for sensing application. Integr. Ferroelectr. 190(1), 149–155 (2018)

    Article  Google Scholar 

  34. Yu, C., Irudayaraj, J.: Multiplex biosensor using gold nanorods. Anal. Chem. 79(2), 572–579 (2007)

    Article  Google Scholar 

  35. Yuan, S., Yang, R., Xu, J., Wang, J., Tian, J.: Photoexcited switchable single-/dual-band terahertz metamaterial absorber. Mater. Res. Express 6(7), 075807 (2019)

    ADS  Article  Google Scholar 

  36. Zhang, W., Lan, F., Xuan, J., Mazumder, P., Aghadjani, M., Yang, Z., Men, L.: Ultrasensitive dual-band terahertz sensing with metamaterial perfect absorber. In: 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), (IEEE, 2017), pp. 1–3.

  37. Zhong, S., Wu, L., Liu, T., Huang, J., Jiang, W., Ma, Y.: Transparent transmission-selective radar-infrared bi-stealth structure. Opt. Express 26(13), 16466–16476 (2018)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the National Natural Science Foundation of China, grant number 61205095, and Shanghai Young College Teacher Develop funding schemes, grant number slg11006.

Funding

This research was funded by the National Natural Science Foundation of China, Grant Number 61205095 and Shanghai Young College Teacher Develop funding schemes, Grant Number slg11006.

Author information

Affiliations

Authors

Contributions

Conceptualization, Y.F.; methodology, Y.F., X.Z.; formal analysis, Y.F.; investigation, Y.F.; data curation, S.L., Y.F.; writing—original draft preparation, Y.F.; writing—review and editing, Y. C., K.C., S.L., X.Z.; visualization, Y. C., X.Z., S.L.; supervision, K.C.; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kejian Chen.

Ethics declarations

Conflicts of interest

Not applicable.

Availability of data and material

Data transparency.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Li, S., Chen, Y. et al. A multi-band absorber based on a dual-trident structure for sensing application. Opt Quant Electron 53, 124 (2021). https://doi.org/10.1007/s11082-021-02768-4

Download citation

Keywords

  • Terahertz
  • Multi-band absorbers
  • High absorption
  • Bio-sensing