A study on single-iteration sobolev descent for linear initial value problems

Abstract

Mahavier and Montgomery construct a Sobolev space for approximate solution of linear initial value problems in a finite difference setting in single-iteration sobolev descent for linear initial value problems, Mahavier, Montgomery, MJMS, 2013. Their Sobolev space is constructed so that gradient-descent converges to a solution in a single iteration, demonstrating the existence of a best Sobolev gradient for finite difference approximation of solutions of linear initial value problems. They then ask if there is a broader class of problems for which convergence in a single iteration in an appropriate Sobolev space occurs. We use their results to show the existence of single-step iteration to solution in a lower dimensional Sobolev space for their examples and then a class of problems for single-step convergence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ali, A., Seadawy, A.R., Lu, D.: Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water wave dynamical equation via two methods and its applications. Open Phys. J. 16, 219–226 (2018)

    Article  Google Scholar 

  2. Arshad, M., Seadawy, A., Lu, D.: Modulation stability and optical soliton solutions of nonlinear Schrodinger equation with higher order dispersion and nonlinear terms and its applications. Superlattices Microstruct. 112, 422–434 (2017)

    ADS  Article  Google Scholar 

  3. Brown, B., Jais, M., Knowles, I.: A variational approach to an elastic inverse problem. Inverse Probl. 21, 1953–1973 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  4. Dix, J.G., McCabe, T.W.: On finding equilibria for isotropic hyperelastic materials. Nonlinear Anal. 15, 437–444 (1990)

    MathSciNet  Article  Google Scholar 

  5. Garcia-Ripoll, J., Konotop, V., Malomed, B., Perez-Garcia, V.: A quasi-local Gross–Pitaevskii equation for attractive Bose–Einstein condensates. Math. Comput. Simul. 62, 21–30 (2003)

    MathSciNet  Article  Google Scholar 

  6. Helal, M.A., Seadawy, A.R., Zekry, M.H.: Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation. Appl. Math. Comput. 232, 1094–1103 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Iqbal, M., Seadawy, A.R., Khalil, O.H., Lu, D.: Propagation of long internal waves in density stratified ocean for the (2+ 1)-dimensional nonlinear Nizhnik–Novikov–Vesselov dynamical equation. Results Phys. 16, 102838 (2020)

    Article  Google Scholar 

  8. Karatson, J., Farago, I.: Preconditioning operators and Sobolev gradients for nonlinear elliptic problems. Comput. Math. Appl. 50, 1077–1092 (2005a)

    MathSciNet  Article  Google Scholar 

  9. Karatson, J., Loczi, L.: Sobolev gradient preconditioning for the electrostatic potential equation. Comput. Math. Appl. 50, 1093–1104 (2005b)

    MathSciNet  Article  Google Scholar 

  10. Knowles, I., Yan, A.: On the recovery of transport parameters in groundwater modelling. J. Comp. Appl. Math. 171, 277–290 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  11. Lu, D., Seadawy, A.R., Ali, A.: Applications of exact traveling wave solutions of modified Liouville and the symmetric regularized long wave equations via two new techniques. Results Phys. 9, 1403–1410 (2018a)

    ADS  Article  Google Scholar 

  12. Lu, D., Seadawy, A.R., Ali, A.: Dispersive traveling wave solutions of the equal-width and modified equal-width equations via mathematical methods and its applications. Results Phys. 9, 313–320 (2018b)

    ADS  Article  Google Scholar 

  13. Mahavier, W.T.: A numerical method utilizing weighted Sobolev descent to solve singular differential equations. Nonlinear World 4, 435–456 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Mahavier, W.T., Montgomery, J.: Single-iteration Sobolev descent for linear initial value problems. Missouri J. Math. Sci. 25(1), 15–26 (2013)

    MathSciNet  Article  Google Scholar 

  15. Marin, M.: On existence and uniqueness in thermoelasticity of micropolar bodies. Comptes Rendus de l’Académie des Sciences Paris, Série II, B 321(12), 375–480 (1995)

  16. Marin, M.: On the minimum principle for dipolar materials with stretch. Nonlinear Anal. RWA 10(3), 1572–1578 (2009)

    MathSciNet  Article  Google Scholar 

  17. Marin, M., Othman, M.I.A., Seadawy, A.R., Carstea, C.: A domain of influence in the Moore–Gibson–Thompson theory of dipolar bodies. J. Taibah Univ. Sci. 14(1), 653–660 (2020)

    Article  Google Scholar 

  18. Neuberger, J.W.: Projection methods for linear and nonlinear systems of partial differential equations, in ordinary differential equations and operators. Lect. Notes Math. Springer Verlag 546, 341–349 (1976)

    Article  Google Scholar 

  19. Neuberger, J.W.: Sobolev Gradients and Differential Equations, Springer Lecture Notes in Mathematics. Springer, New York (1997)

    Google Scholar 

  20. Ozkan, Yesim Glam, Yasar, Emrullah, Seadawy, Aly: A third-order nonlinear Schrodinger equation: the exact solutions, group-invariant solutions and conservation laws. J. Taibah Univ. Sci. 14(1), 585–597 (2020)

    Article  Google Scholar 

  21. Raza, N., Sial, S., Siddiqi, S.: Simulation study of propagation of pulses in optical fibre communication systems using Sobolev gradients and split-step fourier methods. Int. J. Comp. Methods 6, 1–12 (2009a)

    Article  Google Scholar 

  22. Raza, N., Sial, S., Siddiqi, S., Lookman, T.: Energy-minimization related to nonlinear Schrödinger equation. J. Comp. Phy. 228, 2572–2577 (2009b)

    ADS  Article  Google Scholar 

  23. Raza, N., Sial, S., Siddiqi, S.: Sobolev gradient approach for the time evolution related to energy minimization related to Ginzberg–Landau functionals. J. Comp. Phy. 228, 2566–2571 (2009c)

    ADS  Article  Google Scholar 

  24. Raza, N., Sial, S., Siddiqi, S.: Approximating time evolution related Ginzberg–Landau functionals via Sobolev gradient methods in a finite-element setting. J. Comp. Phy. 229, 1621–1625 (2010)

    ADS  Article  Google Scholar 

  25. Renka, R.J., Neuberger, J.W.: Minimal surfaces and Sobolev gradients. SIAM J. Sci. Comput. 16(6), 1412–1427 (1995)

    MathSciNet  Article  Google Scholar 

  26. Seadawy, A.R.: Travelling-wave solutions of a weakly nonlinear twodimensional higher-order Kadomtsev–Petviashvili dynamical equation for dispersive shallow-water waves. Eur. Phys. J. Plus 132(29), 1–13 (2017a)

    Google Scholar 

  27. Seadawy, A.R.: Solitary wave solutions of two-dimensional nonlinear Kadomtsev–Petviashvili dynamic equation in dust-acoustic plasmas. Pramana J. Phys. 89(3), 1–11 (2017b)

    ADS  Article  Google Scholar 

  28. Sial, S., Neuberger, J., Lookman, T., Saxena, A.: Energy minimization using Sobolev gradients: application to phase separation and ordering. J. Comp. Phys. 189, 88–97 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  29. Tariq, K.U.H., Seadawy, A.R.: Bistable Bright-Dark solitary wave solutions of the (3 + 1)-dimensional Breaking soliton, Boussinesq equation with dual dispersion and modified Korteweg-de Vries–Kadomtsev–Petviashvili equations and their applications. Results Phys. 7, 1143–1149 (2017)

    ADS  Article  Google Scholar 

  30. Tariq, K.U.H., Seadawy, A.R.: Soliton solutions of (3 + 1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in water waves. J. King Saud Univ. Sci. 31(1), 8–13 (2019)

    Article  Google Scholar 

  31. Vlase, S., Marin, Marin, Ochsner, A., Scutaru, M.L.: Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Contin. Mech. Thermodyn. 31(3), 715–724 (2019)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aly R. Seadawy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sial, S., Seadawy, A.R., Raza, N. et al. A study on single-iteration sobolev descent for linear initial value problems. Opt Quant Electron 53, 135 (2021). https://doi.org/10.1007/s11082-021-02756-8

Download citation

Keywords

  • Single iteration
  • Steepest descent method
  • Sobolev gradients