Skip to main content
Log in

A tunable broadband graphene-based metamaterial absorber in the far-infrared region

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper reports a new design of a broadband absorber composed of graphene, dielectric, and gold layers. The designed absorber has four absorbent modes close to each other, which results in the formation of broadband absorption. The relative bandwidth, a key parameter to assess the bandwidth improvement, shows a significant increase in the proposed design compared to similar structures published in recent years. The numerical results also reveal this metamaterial absorber can be used for applications in the far-infrared frequency range due to choosing optimized dimensions and the graphene Fermi level. Unlike other graphene-based metamaterials, which require complicated structures to be able to attain broadband absorption, the physical structure of the proposed design has a relatively simple fabrication process. For further investigations, the effect of split geometry on the absorption spectrum is studied. Also, the use of graphene in this metamaterial absorber provides dynamic adjustability through electrostatic doping in order to tune the amount of absorption. This characteristic has been studied by changing the graphene Fermi level. This feature can be widely used in electro-absorption switches and modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Saghaei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alden Mostaan, S.M., Saghaei, H. A tunable broadband graphene-based metamaterial absorber in the far-infrared region. Opt Quant Electron 53, 96 (2021). https://doi.org/10.1007/s11082-021-02744-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02744-y

Keywords

Navigation