The effect of dye concentration and cell thickness on dye–polymer random laser action

Abstract

This study has been aimed to explore the effect of dye concentration, cell thickness, and polymers on the characteristics of random laser (emission spectrum, full width at half maximum (FWHM), and lasing threshold). It has been found that the properties of the random laser are affected by these three parameters significantly, as it was observed that the emission spectrum reached its best value when adding the of polyvinylpyrrolidone polymer. As for the FWHM and the laser threshold, their value decreased from 38 to 35 nm and from 0.71 to 0.68 A respectively after adding the polymeric material. These results were achieved at concentration of 5×10–4 M and cell thickness 0.1 cm. Improving the properties of random lasers is considered a significant step in creating optical devices useful in medical applications and biosensors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Cao, H., Zhao, Y.G., Ho, S.T., Seelig, E.W., Wang, Q.H., Chang, R.P.H.: Random laser action in semiconductor powder. Phys. Rev. Lett. 82(11), 2278–2281 (1999). https://doi.org/10.1103/PhysRevLett.82.2278

    ADS  Article  Google Scholar 

  2. Chen, S.J., Shi, J.W., Zhai, T.R., Wang, Z.N., Liu, D.H., Chen, X.: Wavelength variation of a random laser with concentration of a gain material. Chin. Phys. Lett. 28(10), 2–5 (2011). https://doi.org/10.1088/0256-307X/28/10/104204

    Article  Google Scholar 

  3. Cui, L., et al.: Retrieval of contaminated information using random lasers. Appl. Phys. Lett. 201101-201104 (2015). https://doi.org/10.1063/1.4921327

  4. De Souza, M.A.F., Lencina, A., Vaveliuk, P.: Lasing features in scattering gain media and amplified spontaneous emission systems. J. Appl. Phys. 0231131-0231137 (2006). https://doi.org/10.1063/1.2218030

  5. Ejbarah, R.A., Jassim, J.M., Hamidi, S.M.: Random laser action under picosecond laser pumping. Opt. Quantum Electron. 52, 436-444 (2020). https://doi.org/10.1007/s11082-020-02543-x

    Article  Google Scholar 

  6. Frolov, S.V., Gellermann, W., Ozaki, M., Yoshino, K., Vardeny, Z.V.: Cooperative emission in π-conjugated polymer thin films. Phys. Rev. Lett. 78(4), 729–732 (1997). https://doi.org/10.1103/PhysRevLett.78.729

    ADS  Article  Google Scholar 

  7. Haddawi, S.F., Mirahmadi, M., Mbarak, H., Kodeary, A.K., Ghasemi, M., Hamidi, S.M.: Footprint of plexcitonic states in low-power green–blue plasmonic random laser. Appl. Phys. A Mater. Sci. Process. 843-848 (2019). https://doi.org/10.1007/s00339-019-3139-y

  8. Ignesti, E., Tommasi, F., Fini, L., Martelli, F., Azzali, N., Cavalieri, S.: A new class of optical sensors: a random laser based device. Sci. Rep. 35225-35231 (2016). https://doi.org/10.1038/srep35225

  9. Ismail, W.Z.W., Kamil, W.M.W.A., Dawes, J.M.: Enhancement of random laser properties on solid polymer films by increasing scattering effect. J. Russ. Laser Res. 40(4), 364–369 (2019). https://doi.org/10.1007/s10946-019-09812-5

    Article  Google Scholar 

  10. Jassim, J.M., Khadim, Y.H., Al-Sultani, M.M.M.: Study of linear and non-linear optical properties for the thin films of laser dye-Fe3O4 nanoparticles doped PMMA thin films. J. Eng. Appl. Sci. 13(22), 9511–9518 (2018). https://doi.org/10.3923/jeasci.2018.9511.9518

    Article  Google Scholar 

  11. Lee, C.-R., Lin, S.-H., Guo, C.-H., Chang, S.-H., Mo, T.-S., Chu, S.-C.: All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets. Opt. Express 18(3), 2406-2412 (2010). https://doi.org/10.1364/oe.18.002406

    ADS  Article  Google Scholar 

  12. Letokhov, V.: Generation of light by a scattering medium with negative resonance absorption. Sov. J. Exp. Theor. Phys. 26(4), 835-840 (1968)

    ADS  Google Scholar 

  13. Lin, J.-H., Hsiao, Y.-L.: Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes. Opt. Mater. Express 4(8), 1555-1563 (2014). https://doi.org/10.1364/ome.4.001555

    ADS  Article  Google Scholar 

  14. Penzkofer, A., Lu, Y.: Fluorescence quenching of rhodamine 6G in methanol at high concentration. Chem. Phys. 103(2–3), 399–405 (1986). https://doi.org/10.1016/0301-0104(86)80041-6

    Article  Google Scholar 

  15. Polson, R.C., Vardeny, Z.V.: Organic random lasers in the weak-scattering regime. Phys. Rev. B Condens. Matter Mater. Phys. 0452051-0452055 (2005). https://doi.org/10.1103/PhysRevB.71.045205

  16. Shirvani-Mahdavi, H., Mohajerani, E., Wu, S.-T.: Circularly polarized high-efficiency cholesteric liquid crystal lasers with a tunable nematic phase retarder. Opt. Express 18(5), 5021-5028 (2010). https://doi.org/10.1364/oe.18.005021

    ADS  Article  Google Scholar 

  17. Tolentino Dominguez, C., Maltez, R.L., Dos Reis, R.M.S., Melo, L.S.A., Gomes, A.S.L.: Influence of Ag nanoparticles density on the enhancement of random laser emission from PMMA thin films doped with Rh6G dye. In: Opt. InfoBase Conf. Pap., no. September, pp. 10–13 (2010). https://doi.org/10.1364/laop.2010.mb16

  18. Van Hoang, D., Thi Phuong, N., Van Phu, N.: Random lasers: characteristics, applications and some research results. Comput. Methods Sci. Technol. Special Is(2), 47–51 (2010). https://doi.org/10.12921/cmst.2010.si.02.47-51

    Article  Google Scholar 

  19. Wan Ismail, W.Z., Liu, G., Zhang, K., Goldys, E.M., Dawes, J.M.: Dopamine sensing and measurement using threshold and spectral measurements in random lasers. Opt. Express 24(2), 85-91 (2016). https://doi.org/10.1364/oe.24.000a85

    ADS  Article  Google Scholar 

  20. Wang, Z., et al.: Two-threshold silver nanowire-based random laser with different dye concentrations. Laser Phys. Lett. (2014). https://doi.org/10.1088/1612-2011/11/9/095002

  21. Wiersma, D.S., Lagendijk, A.: Light diffusion with gain and random lasers. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 54(4), 4256–4265 (1996). https://doi.org/10.1103/physreve.54.4256

    Article  Google Scholar 

  22. Yang, L., Feng, G., Yi, J., Yao, K., Deng, G., Zhou, S.: Effective random laser action in Rhodamine 6G solution with Al nanoparticles. Appl. Opt. 50(13), 1816–1821 (2011). https://doi.org/10.1364/AO.50.001816

    ADS  Article  Google Scholar 

  23. Ye, L., Zhao, C., Feng, Y., Gu, B., Cui, Y., Lu, Y.: Study on the polarization of random lasers from dye-doped nematic liquid crystals. Nanoscale Res. Lett. (2017). https://doi.org/10.1186/s11671-016-1778-x

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Hamidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ejbarah, R.A., Jassim, J.M. & Hamidi, S.M. The effect of dye concentration and cell thickness on dye–polymer random laser action. Opt Quant Electron 53, 116 (2021). https://doi.org/10.1007/s11082-021-02742-0

Download citation

Keywords

  • Random lasing
  • Nanoparticles
  • Picosecond laser
  • Polymers