Optical properties of molybdenum disulfide based photonic crystal

Abstract

In this paper, the transmission properties of a one-dimensional photonic crystal containing molybdenum disulfide (\(MoS_2\)) monolayers are studied theoretically using the transfer matrix method. The considered photonic crystal structure contains \(MoS_2\) monolayers, which are embedded between dielectric layers. It is found that the presence of \(MoS_2\) causes to creation of a new photonic band gap which is almost omnidirectional and also polarization insensitive. Besides, the spatial distribution of the tangential component of the electric field for a TE-polarized plane wave has been shown for some wavelengths. It is found that the behaviour of the waves from the \(MoS_2\) induced band gap is different from that of Bragg gaps. Finally, the Gaussian beam propagation inside and outside of the photonic crystal have been simulated using the finite element method for critical wavelengths and different incident angles which verify the behavior of field profiles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ansari, N., Mohebbi, E.: Increasing optical absorption in one-dimensional photonic crystals including \(mos_2\) monolayer for photovoltaics applications. Opt. Mater. 62, 152–158 (2016)

    ADS  Article  Google Scholar 

  2. Cai, W., Zhu, Y., Li, X., Piner, R.D., Ruoff, R.S.: Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 95, 123115 (2009)

    ADS  Article  Google Scholar 

  3. Chen, K., Zhou, X., Cheng, X., Qiao, R., Cheng, Y., Liu, C., Xie, Y., Yu, W., Yao, F., Sun, Z., et al.: Graphene photonic crystal fibre with strong and tunable light-matter interaction. Nat. Photon. 13, 754–759 (2019)

    ADS  Article  Google Scholar 

  4. Choi, M., Park, Y.J., Sharma, B.K., Bae, S.R., Kim, S.Y., Ahn, J.H.: Flexible active-matrix organic light-emitting diode display enabled by \(MoS_2\) thin-film transistor. Sci. Adv. 4, eaas8721 (2018)

    ADS  Article  Google Scholar 

  5. Entezar, S.R., Saleki, Z., Madani, A.: Optical properties of a defective one-dimensional photonic crystal containing graphene nanaolayers. Phys. B Condens. Matter 478, 122–126 (2015)

    ADS  Article  Google Scholar 

  6. Estrada-Wiese, D., del Río-Chanona, E.A., Del Río, J.A.: Stochastic optimization of broadband reflecting photonic structures. Sci. Rep. 8, 1193 (2018)

    ADS  Article  Google Scholar 

  7. Fang, X., Tian, Q., Yang, G., Gu, Y., Wang, F., Hua, B., Yan, X.: Enhanced absorption of monolayermolybdenum disulfide \(mos_2\) using nanostructures with symmetrical cross resonator in the visible ranges. Opt. Quantum Electron. 51, 21 (2019)

    Article  Google Scholar 

  8. Feng, S., Elson, J., Overfelt, P.: Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes. Optics Express 13, 4113–4124 (2005)

    ADS  Article  Google Scholar 

  9. Fujita, M., Takahashi, S., Tanaka, Y., Asano, T., Noda, S.: Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296–1298 (2005)

    ADS  Article  Google Scholar 

  10. Gan, X., Gao, Y., Mak, K.F., Yao, X., Shiue, R.J., Van Der Zande, A., Trusheim, M.E., Hatami, F., Heinz, T.F., Hone, J., et al.: Controlling the spontaneous emission rate of monolayer \(mos_2\) in a photonic crystal nanocavity. Appl. Phys. Lett. 103, 181119 (2013)

    ADS  Article  Google Scholar 

  11. Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)

    ADS  Article  Google Scholar 

  12. Gong, F., Fang, H., Wang, P., Su, M., Li, Q., Ho, J.C., Chen, X., Lu, W., Liao, L., Wang, J., et al.: Visible to near-infrared photodetectors based on \(MoS_2\) vertical Schottky junctions. Nanotechnology 28, 484002 (2017)

    ADS  Article  Google Scholar 

  13. Hieu, N.N., Ilyasov, V.V., Vu, T.V., Poklonski, N.A., Phuc, H.V., Phuong, L.T.T., Hoi, B.D., Nguyen, C.V.: First principles study of optical properties of molybdenum disulfide: from bulk to monolayer. Superlatt. Microstruct. 115, 10–18 (2018)

    ADS  Article  Google Scholar 

  14. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic crystals: molding the flow of light (Press, edn. Princeton Univ 94–99, (2008)

  15. Kadantsev, E.S., Hawrylakb, P.: Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012)

    ADS  Article  Google Scholar 

  16. Knight, J.C., Birks, T.A., Cregan, R.F., Russell, P., Sandro, J.: Photonic crystals as optical fibres-physics and applications. Opt. Mater. 11, 143–151 (1999)

    ADS  Article  Google Scholar 

  17. Li, J., Chen, Z., Yang, H., Yi, Z., Chen, X., Yao, W., Duan, T., Wu, P., Li, G., Yi, Y.: Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using Au nanocubes. Nanomaterials 10, 257 (2020)

    Article  Google Scholar 

  18. Liu, J.T., Tong, H., Wu, Z.H., Huang, J.B., Zhou, Y.S.: Greatly enhanced light emission of \(mos_2\) using photonic crystal heterojunction. Sci. Rep. 7, 16391 (2017)

    ADS  Article  Google Scholar 

  19. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A.: Ultrasensitive photodetectors based on monolayer \(mos_2\). Nat. Nanotechnol. 8, 497–501 (2013)

    ADS  Article  Google Scholar 

  20. Lu, H., Gan, X., Mao, D., Fan, Y., Yang, D., Zhao, J.: Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures. Opt. Express 25, 21630–21636 (2017)

    ADS  Article  Google Scholar 

  21. Madani, A., Entezar, S.R.: Optical properties of one-dimensional photonic crystals containing graphene sheets. Phys. B Condens. Matter 431, 1–5 (2013)

    ADS  Article  Google Scholar 

  22. Mukherjee, B., Tseng, F., Gunlycke, D., Amara, K.K., Eda, G., Simsek, E.: Complex electrical permittivity of the monolayer molybdenum disulfide(\(mos_2\)) in near uv and visible. Opt. Mater. Express 5, 447–455 (2015)

    ADS  Article  Google Scholar 

  23. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    ADS  Article  Google Scholar 

  24. Ouyang, Q., Zeng, S., Dinh, X.-Q., Coquet, P., Yong, K.-T.: Sensitivity enhancement of \(MoS_2\) nanosheet based surface plasmon resonance biosensor. Proc. Eng. 140, 134–139 (2016)

    Article  Google Scholar 

  25. Pumera, M.: Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011)

    Article  Google Scholar 

  26. Qin, C., Gao, Y., Qiao, Z., Xiao, L., Jia, S.: Atomic-layered \(mos_2\) as a tunable optical platform. Adv. Opt. Mater. 4, 1429–1456 (2016)

    Article  Google Scholar 

  27. Shahil, K.M., Balandin, A.A.: Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152, 1331–1340 (2012)

    ADS  Article  Google Scholar 

  28. Shahriari, M., Dezfuli, A.G., Sabaeian, M.: Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model. Superlatt. Microstruct. 114, 169–182 (2018)

    ADS  Article  Google Scholar 

  29. Soto-Puebla, D., Xiao, M., Ramos-Mendieta, F.: Optical properties of a dielectric-metallic superlattice: the complex photonic bands. Phys. Lett. A 326, 3–4 (2004)

    Article  Google Scholar 

  30. Tu, L., Cao, R., Wang, X., Chen, Y., Wu, S., Wang, F., Wang, Z., Shen, H., Lin, T., Zhou, P., Meng, X., Hu, W., Liu, Q., Wang, J., Liu, M., Chu, J.: Ultrasensitive negative capacitance phototransistors. Nat. Commun. 11, 1–8 (2020)

    ADS  Google Scholar 

  31. Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., Chen, M., Chen, Y.: Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)

    Article  Google Scholar 

  32. Wu, H.Q., Linghu, C.Y., Lu, H.M., Qian, H.: Graphene applications in electronic and optoelectronic devices and circuits. Chin. Phys. B 22, 098106 (2013)

    ADS  Article  Google Scholar 

  33. Yeh, P., Yariv, A., Hong, C.-S.: Electromagnetic propagation in periodic stratified media. i. general theory. JOSA 67, 423–438 (1977)

    ADS  Article  Google Scholar 

  34. Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X., Zhang, H.: Single-layer \(MoS_2\) phototransistors. ACS Nano 6, 74–80 (2011)

    Article  Google Scholar 

  35. Yu, F., Hu, M., Kang, F., Lv, R.: Flexible photodetector based on large-area few-layer \(MoS_2\). Progr. Nat. Sci. Mater. Int. 28, 563–568 (2018)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amir Madani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shiri, M., Madani, A. & Shaabani, N. Optical properties of molybdenum disulfide based photonic crystal. Opt Quant Electron 53, 105 (2021). https://doi.org/10.1007/s11082-020-02729-3

Download citation

Keywords

  • MoS 2 monolayer
  • Photonic crystal
  • Photonic band gap