Investigation of thermal annealing effects on MoO3 thin film by atomic layer deposition

Abstract

Molybdenum oxide (MoO3) thin films have been obtained by plasma-enhanced atomic layer deposition using precursors of Mo(CO)6 and O2 plasma at a reactor temperature of 160 °C. The MoO3 thin films deposited on p-type silicon substrates with thermally grown 300 nm thick SiO2 layer with different numbers of ALD growth cycles. Spectroscopic ellipsometer is used to characterize as-grown film thickness and refractive index. The as-grown films are treated at annealing temperatures at 300–600 °C. The structural properties of as-grown and annealed thin films have been characterized by optical microscopy, µRaman spectra, and atomic force microscopy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

taken from the green line of the corresponding AFM image. a 150 cycles annealed at 400 °C, b150 cycles annealed at 600 °C, c 300 cycles annealed at 400 °C, d 300 cycles annealed at 600 °C. (Color figure online)

References

  1. Al-Kuhaili, M.F., Durrani, S.M.A., Bakhtiari, I.A.: Pulsed laser deposition of molybdenum oxide thin films. Appl. Phys. A Mater. Sci. Process 98, 609–615 (2010)

    ADS  Google Scholar 

  2. Alsaif, M., Field, M.R., Murdoch, B.J., et al.: Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform. Nanoscale 6, 12780–12791 (2014)

    ADS  Google Scholar 

  3. Bertuch, A., Sundaram, G., Saly, M., et al.: Atomic layer deposition of molybdenum oxide using bis(tert-butylimido)bis(dimethylamido) molybdenum. J. Vac. Sci. Technol. A 32, 1–6 (2014)

    Google Scholar 

  4. Bullock, J., Cuevas, A., Allen, T., et al.: Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl. Phys. Lett. 105, 1–5 (2014)

    Google Scholar 

  5. Campanella, L., Pistoia, G.: MoO3: a new electrode material for nonaqueous secondary battery applications. J. Electrochem. Soc. 118, 1905–1908 (1971)

    ADS  Google Scholar 

  6. Dayal, S., Kumar, C.S.: Development of hierarchical layered nanostructured α-MoO3 thin films using dc magnetron sputtering. Mater. Res. Exp. 3, 106405 (2016)

    Google Scholar 

  7. Demirtas, M., Odaci, C., Shehu, Y., et al.: ALD Assisted 2D Monolayer Transition Metal Dichalcogenides and Their Applications in Optoelectronics, pp. 3034–3037. PhotonIcs & Electromagnetics Research Symposium, Rome (2019)

    Google Scholar 

  8. Demirtas, M., Odaci, C., Shehu, Y., et al.: Layer and size distribution control of CVD-grown 2D MoS2 using ALD-deposited MoO3 structures as the precursor. Mater. Sci. Semicond. Process 108, 1–8 (2020)

    Google Scholar 

  9. Di Giulio, M., Manno, D., Micocci, G., et al.: Physical properties of molybdenum oxide thin films for NO gas detection. Phys. Status Sol. A Appl. Res. 168, 249–256 (1998)

    ADS  Google Scholar 

  10. Dieterle, M., Weinberg, G., Mestl, G.: Raman spectroscopy of molybdenum oxides Part I. Structural characterization of oxygen defects in MoO 3–x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 4, 812–821 (2002)

    Google Scholar 

  11. Diskus, M., Nilsen, O., Fjellvag, H.: Growth of thin films of molybdenum oxide by atomic layer deposition. J. Mater. Chem. 21, 705–710 (2011)

    Google Scholar 

  12. Eda, K.: Longitudinal-transverse splitting effects in IR absorption spectra of MoO3. J. Solid State Chem. 95, 64–73 (1991)

    ADS  Google Scholar 

  13. Elumalai, N.K., Saha, A., Vijila, C., et al.: Enhancing the stability of polymer solar cells by improving the conductivity of the nanostructured MoO3 hole-transport layer. Phys. Chem. Chem. Phys. 15, 6831–6841 (2013)

    Google Scholar 

  14. Fang, Z., Yan, Z., Tan, Y., et al.: Influence of post-annealing treatment on the structure properties of ZnO films. Appl. Surf. Sci. 241, 303–308 (2005)

    ADS  Google Scholar 

  15. Ferroni, M., Guidi, V., Martinelli, G., et al.: MoO3-based sputtered thin films for fast NO2 detection. Sens. Actuators B Chem. 48, 285–288 (1998)

    Google Scholar 

  16. Girotto, C., Voroshazi, E., Cheyns, D., et al.: Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells. ACS Appl. Mater. Interfaces 3, 3244–3247 (2011)

    Google Scholar 

  17. Guerfi, A., Paynter, R.W., Dao, L.H.: Characterization and stability of electrochromic MoO3 thin-films prepared by electrodeposition. J. Electrochem. Soc. 142, 3457–3464 (1995)

    ADS  Google Scholar 

  18. Guo, T., Yao, M.S., Lin, Y.H., et al.: A comprehensive review on synthesis methods for transition-metal oxide nanostructures. CrystEngComm 17, 3551–3585 (2015)

    Google Scholar 

  19. He, T., Yao, J.N.: Photochromism of molybdenum oxide. J. Photochem. Photobiol. C Photochem. Rev. 4, 125–143 (2003)

    Google Scholar 

  20. Hogabri, A., Hajakbari, F.: Structural and optical properties of nanocrystalline α-MoO3 thin films prepared at different annealing. J. Theor. Appl. Phys. 9, 67–73 (2015)

    ADS  Google Scholar 

  21. Hu, H., Deng, C., Xu, J., et al.: Metastable h-MoO3 and stable α-MoO3 microstructures: controllable synthesis, growth mechanism and their enhanced photocatalytic activity. J. Exp. Nanosci. 10, 1336–1346 (2015)

    Google Scholar 

  22. Ivanova, T., Gesheva, K.A., Popkirov, G., et al.: Electrochromic properties of atmospheric CVD MoO3 and MoO3-WO3 films and their application in electrochromic devices. Mater. Sci. Eng. B Sol. State Mater. Adv. Technol. 119, 232–239 (2005)

    Google Scholar 

  23. Khandare, L., Late, D.J.: MoO3-rGO nanocomposites for electrochemical energy storage. Appl. Surf. Sci. 418, 2–8 (2017)

    ADS  Google Scholar 

  24. Koike, K., Wada, R., Yagi, S., et al.: Characteristics of MoO3 films grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 53, 1–4 (2014)

    Google Scholar 

  25. Kumar, B.R., Rao, T.S.: AFM Studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Dig. J. Nanomater. Biostruct. 7, 1881–1889 (2012)

    Google Scholar 

  26. Lee, S.H., Kim, Y.H., Deshpande, R., et al.: Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv. Mater. 20, 3627–3632 (2008)

    Google Scholar 

  27. Lin, Y., Xie, J., Wang, H., et al.: Green luminescent zinc oxide films prepared by polymer-assisted deposition with rapid thermal process. Thin Sol. Films 492, 101–104 (2005)

    ADS  Google Scholar 

  28. Liu, D., Lei, W., Hao, J., et al.: High-pressure Raman scattering and x-ray diffraction of phase transitions in MoO 3. J. Appl. Phys. 105, 023513 (2009)

    Google Scholar 

  29. Lucovsky, G., Tsu, D.V.: Differences between direct and remote plasma enhanced CVD. J. Non Cryst. Sol. 97–8, 265–268 (1987)

    ADS  Google Scholar 

  30. Macco, B., Vos, M.F.J., Thissen, N.F.W., et al.: Low-temperature atomic layer deposition of MoOx for silicon heterojunction solar cells. Phys. Status Sol. Rapid Res. Lett. 9, 393–396 (2015)

    ADS  Google Scholar 

  31. Mahajan, S.S., Mujawar, S.H., Shinde, P.S., et al.: Concentration dependent structural, optical and electrochromic properties of MoO3 thin films. Int. J. Electrochem. Sci. 3, 953–960 (2008)

    Google Scholar 

  32. Mattinen, M., King, P.J., Khriachtchev, L., et al.: Atomic layer deposition of crystalline molybdenum oxide thin films and phase control by post-deposition annealing. Mater. Today Chem. 9, 17–27 (2018)

    Google Scholar 

  33. Meyer, J., Hamwi, S., Kroger, M., et al.: Transition metal oxides for organic electronics: energetics. Device Phys. Appl. Adv. Mater. 24, 5408–5427 (2012)

    Google Scholar 

  34. Nanayakkara, C.E., Vega, A., Liu, G., et al.: Role of initial precursor chemisorption on incubation delay for molybdenum oxide atomic layer deposition. Chem. Mater. 28, 8591–8597 (2016)

    Google Scholar 

  35. Naresh, P., Raju, G.N., Reddy, M.S., et al.: Dielectric and spectroscopic features of ZnO-ZnF2-B2O3:MoO3 glass ceramic-a possible material for plasma display panels. J. Mater. Sci. Mater. Electron. 25, 4902–4915 (2014)

    Google Scholar 

  36. Rahmani, M.B., Keshmiri, S.H., Yu, J., et al.: Gas sensing properties of thermally evaporated lamellar MoO3. Sens. Actuators B Chem. 145, 13–19 (2010)

    Google Scholar 

  37. Sanehira, E.M., de Villers, B.J.T., Schulz, P., et al.: Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoOx/Al for hole collection. ACS Energy Lett. 1, 38–45 (2016)

    Google Scholar 

  38. Seguin, L., Figlarz, M., Cavagnat, R., et al.: Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 51, 1323–1344 (1995)

    ADS  Google Scholar 

  39. Shakir, I., Shahid, M., Yang, H.W., et al.: Structural and electrochemical characterization of alpha-MoO3 nanorod-based electrochemical energy storage devices. Electrochim. Acta 56, 376–380 (2010)

    Google Scholar 

  40. Sivakumar, R., Vijayan, V., Ganesan, V., et al.: Electron beam evaporated molybdenum oxide films: a study of elemental and surface morphological properties. Smart Mater. Struct. 14, 1204–1209 (2005)

    ADS  Google Scholar 

  41. Vos, M.F.J., Macco, B., Thissen, N.F.W., et al.: Atomic layer deposition of molybdenum oxide from ((NBu)-Bu-t)(2)(NMe2)(2)Mo and O-2 plasma. J. Vac. Sci. Technol. A 34, 1–7 (2016)

    Google Scholar 

  42. Wang, M., Wang, J., Chen, W., et al.: Effect of preheating and annealing temperatures on quality characteristics of ZnO thin film prepared by sol–gel method. Mater. Chem. Phys. 97, 219–225 (2006)

    Google Scholar 

  43. Wang, F.X., Qiao, X.F., Xiong, T., et al.: The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes. Org. Electron. 9, 985–993 (2008)

    Google Scholar 

  44. Yebka, B., Julien, C., Nazri, G.: Electrochemical behavior of hydrated molybdenum oxides in rechargeable lithium batteries. Ionics 5, 236–243 (1999)

    Google Scholar 

  45. Zheng, L., Xu, Y., Jin, D., et al.: Novel metastable hexagonal moo3 nanobelts: synthesis, photochromic, and electrochromic properties. Chem. Mater. 21, 5681–5690 (2009)

    Google Scholar 

Download references

Acknowledgements

The author thanks Professor F. Ay and Professor N. K. Perkgoz for their useful discussion. The author also thanks C. Odaci and Y. Shehu for their important contributions. This work was performed at MIDAS Research Group Facility, Department of Electrical and Electronics Engineering, Eskisehir Technical University, Turkey.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mustafa Demirtaş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demirtaş, M. Investigation of thermal annealing effects on MoO3 thin film by atomic layer deposition. Opt Quant Electron 53, 79 (2021). https://doi.org/10.1007/s11082-020-02717-7

Download citation

Keywords

  • Transition metal oxide
  • Plasma enhanced atomic layer deposition
  • Raman spectroscopy
  • Spectroscopic ellipsometry
  • Atomic force microscopy