Tunable properties of omnidirectional band gap based on photonic quasicrystals containing superconducting material


In this study, we report the transmittance properties of 1D superconducting photonic quasicrystals (SPQCs) with Generalized Fibonacci (GF) quasiperiodic sequence. The constituent heterolayers are made of dielectric (SiO2) and superconductor (YaBO2CuO7). The transmittance spectrum is theoretically investigated by the Transfer Matrix Method and the Gorter Casimir Two-fluid model. It is shown that the 1D SPQCs exhibit a broadening omnidirectional band gap (OBG) at given GF parameters. The photonic band gap was adjusted by the constituent materials properties and the sort of regular quasi-periodic arrangement of (H/L) layers. The bandwidth of OBG can be enhanced by applying a typical deformation along the basic 1D SPQC sample. Similarly, a significant enhancement of main gap can be achieved, covering an extremely broad range of visible light frequencies by juxtaposition of Fibonacci stacks (GF(m, n))p. By applying structural defects, a pointed insert peaks can be notably opened within the gap. These results may be useful for selective superconducting photonic high reflectors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Aly, A-H., Sabra, W., Elsayed, H.: Dielectric and superconducting photonic crystals. J. Superconductivity Novel Magnet. 26 (2012).

  2. Aly, A.-H., Mohamed, D., Mohaseb, M.-A., AbdEl-Gawaadc, N.-S., Trabelsi, Y.: Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 10, 31765–31772 (2020)

    ADS  Article  Google Scholar 

  3. Baraket, Z., Zaghdoudi, J., Kanzari, M.: Investigation of the 1D symmetrical linear graded superconductor-dielectric photonic crystals and its potential applications as an optimized low temperature sensors. Opt. Mater. 64, 147 (2017)

    ADS  Article  Google Scholar 

  4. Barvestani, J.: Omnidirectional narrow bandpass filters based on one-dimensional Superconductor dielectric photonic crystal heterostructures. Phys. B 457, 218–224 (2015)

    ADS  Article  Google Scholar 

  5. BenAli, N., Dhasarathan, V., Alsaif, H., Trabelsi, Y., Nguyen, T-K., Bouazzi, Y., Kanzari, K.: Design of output-graded narrow polychromatic filter by using photonic quasicrystals. Phys. B. Condensed Matter 582, 411918 (2020).

  6. Herrera, Y., Calero, J., Montenegro, N.-P.: Dependence of transmittance in a 1D superconductor-semiconductor photonic crystal. J. Appl. Phys. 123, 033101 (2018)

    ADS  Article  Google Scholar 

  7. Hu, C., Zhang, H., Liu, G.: Analysis of unidirectional broadband absorption in one-dimensional superconductor photonic crystal with an asymmetric multiple-layered structure. Appl. Opt. 58, 2890–2897 (2019)

    ADS  Article  Google Scholar 

  8. Ji, J-W., Jin-xia,G.: Transmission properties of Fibonacci quasi-periodic onedimensional superconducting photonic crystals. Opt. Int. J. Light Electron Opt. 123 (2012).

  9. Lee, H-M., Wu, J-C.: Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal. J. Appl. Phys. 107 (2010).

  10. Lin, W.-H., Wu, C.-J., Yang, T.-J., Chang, S.-J.: Terahertz multichannel filter in a superconducting photonic crystal. Opt. Express 18, 27155–27166 (2010)

    ADS  Article  Google Scholar 

  11. Rahimi, H.: Analysis of photonic spectra in Thue-Morse, double-period and Rudin-Shapiro quasiregular structures made of high temperature superconductors in visible range. Opt. Mater. 57, 264–271 (2016)

    ADS  Article  Google Scholar 

  12. Ramanujam, N.R., El-Khozondar, H-J., Dhasarathan, V., Taya, S-A., Aly, A. H.: Design of one dimensional defect based photonic crystal by composited superconducting material for bio sensing applications. Phys. B. Condensed Matter 572, 42–55 (2019).

  13. Segovia-Chaves, F., Vinck-Posadaa, H.: Dependence of the transmittance spectrum on temperature and thickness of superconducting defects coupled in dielectric one dimensionalphotonic crystals. Opt. Int. J. Light Electron Opt. 170, 384–390 (2018)

    Article  Google Scholar 

  14. Segovia-Chaves, F., Vinck-Posada, H., Trabelsi, Y., BenAli, N.: Transmittance spectrum in a one-dimensional photonic crystal with Fibonacci sequence superconductor–semiconductor. Opt. Int. J. Light Electron Opt. 217, 164803 (2020)

    Article  Google Scholar 

  15. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with longrange orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    ADS  Article  Google Scholar 

  16. Talebzadeha, R., Bavagha, M.: Filtering properties of Thue-Morse nano-photonic crystals containing hightemperature superconductor. Phys. C 548, 119–122 (2018)

    ADS  Article  Google Scholar 

  17. Trabelsi, Y.: Output multichannel optical filter based on hybrid photonic quasicrystals containing a high-Tc superconductor. Photonics Nanostruct. Fundam. Appl. 36, 100724 (2019)

    Article  Google Scholar 

  18. Trabelsi, Y., Ben Ali, N., Bouazzi, Y., Kanzari, M.: Microwave transmission through one-dimensional hybrid quasi-regular (Fibonacci and Thue-Morse)/periodic structures. Photonic Sensor 3, 246–255 (2013)

    ADS  Article  Google Scholar 

  19. Trabelsi, Y., Ben Ali, N., Kanzari, M.: Tunable Narrowband optical filters using superconductor/dielectric generalized Thue-Morse photonic crystals. Microelectron. Eng. 213, 41–46 (2019a)

    Article  Google Scholar 

  20. Trabelsi, Y., Ben Ali, N., Belhadj, W., Kanzari, M.: Photonic band gap properties of one-dimensional generalized Fibonacci photonic quasicrystal containing superconductor material. J. Supercond. Novel Magn. 32, 1–7 (2019b)

    Article  Google Scholar 

  21. Trabelsi, Y., Ben Ali, N., Kanzari, M., Elhawil, A ., Krishnamurthy, R., Kanzari,M., Sadegh Amiri, I., Yupapin, P.: Design of structural gigahertz multichanneled filter by using generalized Fibonacci superconducting photonic quasicrystals. Results Phys. 13 (2019).

  22. Trabelsi, Y., BenAli, N., Aly, A.H., Kanzari, M.: Tunable high Tc superconducting photonic band gap resonators based on hybrid quasi-periodic multilayered stacks. Phys. C 576, 1353706 (2020)

    ADS  Article  Google Scholar 

  23. Upadhyay, M., Awasthi, S.-K., Shiveshwari, L., Srivastava, P.-K., Ojha, S.-P.: Thermally tunable photonic filter for WDM networks using 1D superconductor dielectric photonic crystals. J. Supercond. Novel Magn. 28, 2275–2280 (2015)

    Article  Google Scholar 

  24. Wu, J., Gao, J.: Analysis of temperature-dependent optical properties in 1D ternary superconducting photonic crystal with mirror symmetry. J. Supercond. Novel Magn. 28, 1971–1976 (2015)

    Article  Google Scholar 

  25. Wu, C.-J., Liu, C.-L., Yang, T.-J.: Investigation of photonic band structure in a one-dimensional superconducting photonic crystal. J. Opt. Soc. Am. B 26, 2089–2094 (2009)

    ADS  Article  Google Scholar 

  26. Zang, H.-F., Liu, S.-B., Yang, H.: Omnidirectional photonic band gaps in onedimensional ternary superconductor-dielectric photonic crystals based on a new Thue-Morse aperiodic structure. J. Supercond. Novel Magn. 27, 41–52 (2014)

    Article  Google Scholar 

  27. Zhang, H.-F., Zhen, J.-P., He, W.-P.: Omnidirectional photonic band gaps enhanced by Fibonacci quasiperiodicone-dimensional ternary plasma photonic crystals. Opt. Int. J. Light Electron Opt. 124, 4182–4187 (2013)

    Article  Google Scholar 

Download references


The authors are thankful to the Deanship of Scientific Research- Research Center at King Khalid University in Saudi Arabia for funding this research (code number: R.G.P.1/182/41).

Author information



Corresponding author

Correspondence to Youssef Trabelsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trabelsi, Y. Tunable properties of omnidirectional band gap based on photonic quasicrystals containing superconducting material. Opt Quant Electron 53, 76 (2021). https://doi.org/10.1007/s11082-020-02708-8

Download citation


  • Photonic quasicrystals
  • Superconductor
  • Two-fluid model
  • Omnidirectional bragg gap
  • Fibonacci
  • Photonic band gap