Optical and structural characterization of copper sulphide nanoparticles from copper(II) piperidine dithiocarbamate

Abstract

We report the preparation of copper sulphide nanoparticles from copper(II) piperidine dithiocarbamate. Powder XRD patterns confirmed covellite copper sulphide (CuS) for nanoparticles obtained at 120 °C while nanoparticles prepared at 180 and 220 °C exist in digenite copper sulphide (Cu9S5) crystalline phases. TEM micrographs showed CuS obtained at 120 °C have mixture of hexagonal, triangular, and spherical shapes with no agglomeration with crystallite sizes in the range 4.9–51.4 nm. Copper sulphide obtained at 180 °C have particle sizes in the range 31.3–44.0 nm while agglomerated particles were obtained at 220 °C with particle sizes of 74.4–125.4 nm. The results confirmed that the particle sizes of the as-prepared copper sulphide nanoparticles are temperature dependent. Optical studies of the copper sulphide nanoparticles indicates the absorption band edges are blue shifted due to decreased crystallite sizes of the nanoparticles compared to bulk copper sulphide.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdelhady, A.L., Ramasamy, K., Malik, M.A., O’Brien, P., Haigh, S.J., Raftery, J.: New routes to copper sulfide nanostructures and thin films. J. Mater. Chem. 21, 17888–17895 (2011)

    Google Scholar 

  2. Afzaal, M., Crouch, M.D., Malik, M.A., Motevalli, M., O’Brien, P., Park, J.-H.: Deposition of CdSe thin films using a novel single-source precursor; [MeCd{(SePiPr2)2N}]2. J. Mater. Chem. 13, 639–640 (2003)

    Google Scholar 

  3. Afzaal, M., Malik, M.A., O’Brien, P.: Indium sulfide nanorods from single-source precursor. Chem. Commun. 2005, 334–335 (2005)

    Google Scholar 

  4. Ajibade, P.A., Benjamin, C.E.: Group 12 dithiocarbamate complexes: synthesis, spectral studies and their use as precursors for metal sulfides nanoparticles and nanocomposites. Spectrosc. Acta Part A Mol. Biomol. Spectrosc. 113, 408–413 (2013)

    ADS  Google Scholar 

  5. Ajibade, P.A., Mbese, J.Z.: Preparation and characterization of ZnS, CdS and HgS/poly(methyl methacrylate) nanocomposites. Inter. J. Polym. Sci. 752394, 1–8 (2014)

    Google Scholar 

  6. Ajibade, P.A., Nqombolo, A.: Synthesis and structural studies of nickel sulfide and palladium nanocrystals. Chalcogenide Lett. 9, 498–504 (2016)

    Google Scholar 

  7. Ajibade, P.A., Osuntokun, J.: Synthesis and characterization of hexadecylamine capped ZnS, CdS, and HgS nanoparticles using heteroleptic single molecular precursors. J. Nanomater. 782526, 1–7 (2014)

    Google Scholar 

  8. Ajibade, P.A., Mbese, J.Z., Omondi, B.: Group 12 dithiocarbamate complexes: synthesis, characterization, and X-ray crystal structures of Zn(II) and Hg(II) complexes and their use as precursors for metal sulfide nanoparticles. Inorg. Nano-Met. Chem. 47, 202–212 (2017)

    Google Scholar 

  9. Akhtar, M., Abdelhady, A.L., Malik, M.A., O’Brien, P.: Deposition of iron sulfide thin films by AACVD from single source precursors. J. Cryst. Growth 346, 106–112 (2012)

    ADS  Google Scholar 

  10. Andrew, F.P., Ajibade, P.A.: Metal complexes of alkyl-aryl dithiocarbamates: structural studies, anticancer potentials and applications as precursors for semiconductor nanocrystals. J. Mol. Struct. 1155, 843–855 (2018a)

    ADS  Google Scholar 

  11. Andrew, F.P., Ajibade, P.A.: Synthesis, characterization and anticancer studies of bis(1-phenylpiperazine dithiocarbamato) Cu(II), Zn(II) and Pt(II) complexes: crystal structures of 1-phenylpiperazine dithiocarbamato-S, S’ zinc(II) and Pt(II). J. Mol. Struct. 1170, 24–29 (2018b)

    ADS  Google Scholar 

  12. Ashraf, S., Saeed, A., Malik, M.A., Florke, U., Bolte, M., Haider, N., Akhtar, J.: Phase controlled deposition of copper sulphide thin film by using single source molecular precursors. Eur. J. Inorg. Chem. 2014, 533–538 (2014)

    Google Scholar 

  13. Athanassiou, E.K., Grass, R.N., Stark, W.J.: Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology 17, 1668–1673 (2006)

    ADS  Google Scholar 

  14. Balaz, M., Zorkovska, A., Blazquez, J.S., Daneu, N., Balaz, P.: Mechanochemistry of copper sulphides: phase interchanges during milling. J. Mater. Sci. 52, 11947–11961 (2017)

    ADS  Google Scholar 

  15. Botha, N.L., Ajibade, P.A.: Effect of temperature on crystallite sizes of copper sulfide nanocrystals prepared from copper(II)dithiocarbamate single source precursor. Mater. Sci. Semicond. Process. 143, 149–154 (2016)

    Google Scholar 

  16. Chen, J., Deng, S., She, J., Xu, N., Zhang, W., Wen, X., Yang, S.J.: Effect of structural parameter on field emission properties of semiconducting copper sulphide nanowire films. Appl. Phys. 93, 1774–1777 (2003)

    Google Scholar 

  17. Chintso, T., Ajibade, P.A.: Optical and structural properties of lead sulfide nanoparticles. Mater. Lett. 141, 1–6 (2015)

    Google Scholar 

  18. Chunggaze, M., Malik, M.A., O’Brien, P.: Studies of the thermal decomposition of some diselenocarbamato complexes of cadmium or zinc: molecular design for the deposition of MSe films by CVD. J. Mater. Chem. 9, 2433–2437 (1999)

    Google Scholar 

  19. Cruz, J.S., Hernández, S.A.M., Delgado, F.P., Angel, O.Z., Pérez, R.C., Delgado, G.T.: Optical and electrical properties of thin films of CuS nanodisks ensembles annealed in a vacuum and their photocatalytic activity. Int. J. Photoenergy 2013, 1–10 (2013)

    Google Scholar 

  20. Ding, K., Miao, Z., Liu, Z., Zhang, Z., Han, B., An, G., Miao, S., Xie, Y.: Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. J. Am. Chem. Soc. 129, 6362–6363 (2007)

    Google Scholar 

  21. Dunne, P.W., Starkey, C.L., Gimeno-Fabra, M., Lester, E.H.: The rapid size and shape controlled continuity hydrothermal synthesis of metal sulphide nanomaterials. Nanoscale 6, 2406–2418 (2014)

    ADS  Google Scholar 

  22. Dwivedi, N., Kumar, S., Carey, J.D., Dhand, C.: Functional nanomaterials for electronics, optoelectronics, and bioelectronics. J. Nanomater. 2015, 1–2 (2015)

    Google Scholar 

  23. Estrada, A.C., Silva, F.M., Soares, S.F., Coutinho, J.A.P., Trindade, T.: An ionic liquid route to prepare copper sulphide nanocrystals aiming at photocatalytic applications. RSC Adv. 6, 34521–34528 (2016)

    Google Scholar 

  24. Gharibshahi, L., Saion, E., Gharibshahi, E., Shaari, A.H., Matori, K.A.: Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials 10(402), 1–13 (2017)

    Google Scholar 

  25. Gorai, S., Ganguli, D., Chaudhuri, S.: Synthesis of copper sulfides of varying morphologies and stoichiometries controlled by chelating and nonchelating solvents in a solvothermal process. Crystalgrowth Des. 5, 875–877 (2005)

    Google Scholar 

  26. Gour, A., Jain, N.K.: Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 47, 844–851 (2019)

    Google Scholar 

  27. Jin, M., Guannan, H., Zhang, H., Zeng, J., Xie, Z., Xia, Y.: Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Ang. Chem. Int. Ed. 50, 10560–10564 (2011)

    Google Scholar 

  28. Kumar, P., Gusain, M., Nagarajan, R.: Synthesis of Cu1.8S and CuS from copper-thiourea containing precursors; anionic (Cl, NO3, SO42−) influence on the product stoichiometry. Inorg. Chem. 50, 3065–3070 (2011)

    Google Scholar 

  29. Larsen, T.H., Sigman, M., Ghezelbash, A., Doty, R.C., Korgel, B.A.: Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. J. Am. Chem. Soc. 125, 5638–5639 (2003)

    Google Scholar 

  30. Lim, W.P., Wong, C.T., Ang, S.L., Low, H.Y., Chin, W.S.: Phase-selective synthesis of copper sulfide nanocrystals. Chem. Mater. 18, 6170–6177 (2006)

    Google Scholar 

  31. Litvin, A.P., Martynenko, I.V., Purcell-Milton, F., Baranov, A.V., Fedorov, A.V., Gun’ko, Y.K.: Colloidal quantum dots for optoelectronics. J. Mater. Chem. A 5, 13252–13275 (2014)

    Google Scholar 

  32. Mastrodonato, C., Pagano, P., Daniel, J., Vaultier, M., Blanchard-Desce, M.: Molecular-based fluorescent nanoparticles built from dedicated dipolar thienothiophene dyes as ultra-bright green to NIR nanoemitters. Molecules 21(9), 1227 (2016). https://doi.org/10.3390/molecules21091227

    Article  Google Scholar 

  33. Mbese, J.Z., Ajibade, P.A.: Synthesis and characterization of metal sulfides nanoparticles/poly (methyl methacrylate) nanocomposites. J. Sulfur Chem. 35, 438–449 (2014)

    Google Scholar 

  34. Modeshia, D.R., Walton, R.I.: Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 39, 4303–4325 (2010)

    Google Scholar 

  35. Moloto, N., Coville, N.J., Ray, S.S., Moloto, M.J.: Morphological and optical properties of MnS/polyvinylcarbazole hybrid composites. Phys. B 404, 4461–4465 (2009)

    ADS  Google Scholar 

  36. Murray, C.B., Norris, C.J., Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Google Scholar 

  37. Nair, P.S., Radhakrishnan, T., Revaprasadu, N., Kolawole, G.A., O’Brien, P.J.: The synthesis of HgS nanoparticles in polystyrene matrix. Mater. Chem. 14, 581–584 (2004)

    Google Scholar 

  38. Nyamen, L.D., Pullabhotla, V.S.R., Nejo, A.A., Ndifon, P., Revaprasadu, N.: Heterocyclic dithiocarbamates: precursors for shape-controlled growth of CdS nanoparticles. New J. Chem. 35, 1133–1139 (2011)

    Google Scholar 

  39. Osuntokun, J., Ajibade, P.A.: Structural and thermal studies of ZnS and CdS nanoparticles in polymer matrices. J. Nanomater. 3296071, 1–14 (2016)

    Google Scholar 

  40. Paca, A.M., Ajibade, P.A.: Synthesis and structural studies of iron sulphide nanocomposites from iron(III) dithiocarbamate single source precursors. Mater. Chem. Phys. 202, 143–150 (2017)

    Google Scholar 

  41. Peng, Z.A., Peng, X.G.: Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002)

    Google Scholar 

  42. Pourahmad, S.H., Sohrabnezhad, M.S., Sadjadi Zare, K.: Preparation and characterization of host (mesoporous aluminosilicate material)–guest (semiconductor nanoparticles) nanocomposite materials. Mater. Lett. 62, 655–658 (2008)

    Google Scholar 

  43. Riyaz, S., Parveen, A., Azam, A.: Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route. Perspect. Sci. 8, 632–635 (2016)

    Google Scholar 

  44. Sagade, A.A., Sharma, R.: Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature. Sens. Actuattot B- Chem. 133, 135–145 (2008)

    Google Scholar 

  45. Salavati-Niasari, M., Ghanbari, D., Davar, F.: Synthesis of different morphologies of bismuth sulfide nanostructures via hydrothermal process in the presence of thioglycolic acid. J. Alloys Compd. 488, 442–447 (2009)

    Google Scholar 

  46. Samanta, P.K., Saha, A., Kamilya, T.: Chemical synthesis and optical properties of ZnO nanoparticles. J. Nano Electr. 6(4), 1–2 (2014)

    Google Scholar 

  47. Shah, P.S., Husain, S., Johnston, K.P., Korgel, B.A.: Role of steric stabilization on the arrested growth of silver nanocrystals in supercritical carbon dioxide. J. Phys. Chem. 106, 12178–12185 (2002)

    Google Scholar 

  48. Singh, K.V., Martinez-Morales, A.A., Bozhilov, K.N., Ozkan, M.: A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication during template-assisted electrodeposition. Chem. Mater. 19, 2446–2454 (2017)

    Google Scholar 

  49. Sohrabnezhad, S.H., Pourahmad, A.J.: CdS semiconductor nanoparticles embedded in AlMCM-41 by solid-state reaction. J. Alloys Compd. 505, 324–327 (2010)

    Google Scholar 

  50. Thomas, D., Lee III, H.O., Santiago, C.K., Pelzer, M., Kuti, A., Jenrette, E., Bahoura, M.: Rapid microwave synthesis of tunable cadmium selenide (CdSe) quantum dots for optoelectronic applications. J. Nanomater. 2020, 1–8 (2019)

    Google Scholar 

  51. Wang, H., Zhang, J.R., Zhao, X.N., Xu, S., Zhu, J.L.: Preparation of copper monosulfide and nickel monosulfide nanoparticles by sonochemical method. Mater. Lett. 55(55), 253–258 (2002)

    Google Scholar 

  52. Wang, C.Y., Hong, J.M., Chen, G., Zhang, Y., Gu, N.: Facile method to synthesize oleic acid-capped magnetite nanoparticles. Chin. Chem. Lett. 21, 179–182 (2010)

    Google Scholar 

  53. Wu, J.J., Lee, G.J.: Chapter 5 advanced nanomaterials for water splitting and hydrogen generation. Nanomater. Green Energy Micro Nano Technol. 2018, 145–167 (2018)

    Google Scholar 

  54. Wu, Y., Wadia, C., Ma, W., Sadtler, B., Alivisatos, A.P.: Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett. 8, 2551–2555 (2008)

    ADS  Google Scholar 

  55. Zhang, Y.C., Wang, G.Y., Hu, X.Y.: Solvothermal synthesis of hexagonal CdS nanostructures from a single-source molecular precursor. J. Alloys Compd. 437, 47–52 (2007)

    Google Scholar 

  56. Zhou, X., Soldat, A.C., Lind, C.: Phase selective synthesis of copper sulfides by nonhydrolytic sol–gel methods. RSC Adv. 4, 717–726 (2014)

    Google Scholar 

  57. Zhu, T., Xia, B., Zhou, L., Wen Lou, X.: Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. J. Mater. Chem. 22, 7851–7855 (2012)

    Google Scholar 

Download references

Acknowledgements

The financial support of the National Research foundation is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter A. Ajibade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Botha, N.L., Ajibade, P.A. Optical and structural characterization of copper sulphide nanoparticles from copper(II) piperidine dithiocarbamate. Opt Quant Electron 52, 337 (2020). https://doi.org/10.1007/s11082-020-02455-w

Download citation

Keywords

  • Copper(II) piperidine
  • Copper sulphide
  • Nanocrystals
  • Electron microscopy
  • X-ray diffraction