Quantum key distribution with single-particle and Bell state

Abstract

A quantum key distribution protocol with single-particle and Bell state is proposed, in which one player Alice sends the states from some special single-particles and Bell states, the other player Bob measures these states in the single-particle basis or Bell basis, and then establish their secret key. Through combining the single-particle and Bell state novelly, the error rate of eavesdropping in our protocol can be increased up to \( \frac{3}{8} \). Compared to BB84, our protocol can get higher secure key rate in practice.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Beveratos, A., Brouri, R., Gacoin, T., Villing, A., Poizat, J.P., Grangier, P.: Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)

    ADS  Google Scholar 

  4. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    ADS  Google Scholar 

  5. Boström, K., Felbinger, T.: On the security of the ping-pong protocol. Phys. Lett. A 372, 3953–3956 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Bouchard, F., Sit, A., Heshami, K., Fickler, R., Karimi, E.: Round-robin differential-phase-shift quantum key distribution with twisted photons. Phys. Rev. A 98, 010301 (2018)

    ADS  Google Scholar 

  7. Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)

    ADS  Google Scholar 

  8. Cao, Y., Zhao, Y.L., Wu, Y., Yu, X.S., Zhang, J.: Time-scheduled quantum key distribution (QKD) over WDM networks. J. Lightw. Technol. 36, 3382–3395 (2018)

    ADS  Google Scholar 

  9. Chau, H.F.: Quantum key distribution using qudits that each encode one bit of raw key. Phys. Rev. A 92, 062324 (2015)

    ADS  Google Scholar 

  10. Chen, D., Zhao, S.H., Sun, Y.: Measurement-device-independent quantum key distribution with q-plate. Quantum Inf. Process. 14, 4575–4584 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Coles, P.J., Metodiev, E.M., Lutkenhaus, N.: Numerical approach for unstructured quantum key distribution. Nat. Commun. 7, 11712 (2016)

    ADS  Google Scholar 

  12. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    ADS  Google Scholar 

  13. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    ADS  Google Scholar 

  14. Dusek, M.: Discrimination of the Bell states of qudits by means of linear optics. Opt. Commun. 199, 161–166 (2001)

    ADS  Google Scholar 

  15. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Ewert, F., Loock, P.V.: 3/4-efficient Bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett. 113, 140403 (2014)

    ADS  Google Scholar 

  17. Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.S., Peres, A.: Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Phys. Rev. A 56, 1163–1172 (1997)

    ADS  MathSciNet  Google Scholar 

  18. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)

    ADS  MATH  Google Scholar 

  19. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)

    ADS  Google Scholar 

  20. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Hatakeyama, Y., Mizutani, A., Kato, G., Imoto, N., Tamaki, K.: Differential-phase-shift quantum-key-distribution protocol with a small number of random delays. Phys. Rev. A 95, 042301 (2017)

    ADS  Google Scholar 

  22. Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 43, 43 (2002)

    Google Scholar 

  23. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    ADS  Google Scholar 

  24. Hwang, W.Y., Su, H.Y., Bae, J.: Improved measurement-device-independent quantum key distribution with uncharacterized qubits. Phys. Rev. A 95, 062313 (2017)

    ADS  Google Scholar 

  25. Inoue, K.: Differential phase-shift quantum key distribution systems. IEEE J. Sel. Top. Quantum Electron. 21, 6600207 (2015)

    Google Scholar 

  26. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)

    ADS  Google Scholar 

  27. Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59, 436–444 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Kravtsov, K.S., Radchenko, I.V., Kulik, S.P., Molotkov, S.N.: Relativistic quantum key distribution system with one-way quantum communication. Sci. Rep. 8, 6102 (2018)

    ADS  Google Scholar 

  29. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91, 032323 (2015)

    ADS  Google Scholar 

  30. Lai, H., Luo, M.X., Xu, Y.J., Pieprzyk, J., Zhang, J., Pan, L., Orgun, M.A.: Round-robin-differential-phase-shift quantum key distribution based on wavelength division multiplexing. Laser Phys. Lett. 15, 115201 (2018)

    ADS  Google Scholar 

  31. Li, M., Cvijetic, M.: Continuous-variable quantum key distribution with self-reference detection and discrete modulation. IEEE J. Quantum Electron. 54, 8000408 (2018)

    Google Scholar 

  32. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    ADS  Google Scholar 

  33. Li, J., Li, N., Li, L.L., Wang, T.: One step quantum key distribution based on EPR entanglement. Sci. Rep. 6, 28767 (2016)

    ADS  Google Scholar 

  34. Liao, S.K., Cai, W.Q., Liu, W.Y., et al.: Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017)

    ADS  Google Scholar 

  35. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    ADS  Google Scholar 

  36. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    ADS  Google Scholar 

  37. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    ADS  Google Scholar 

  38. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  39. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018)

    ADS  Google Scholar 

  40. Mizutani, A., Imoto, N., Tamaki, K.: Robustness of the round-robin differential-phase-shift quantum-key-distribution protocol against source flaws. Phys. Rev. A 92, 060303 (2015)

    ADS  Google Scholar 

  41. Pathak, A., Thapliyal, K.: A comment on the one step quantum key distribution based on EPR entanglement (2016). arXiv:1609.07473

  42. Pavicic, M., Bensom, O., Schell, A.W., Wolters, J.: Mixed basis quantum key distribution with linear optics. Opt. Express 25, 23545 (2017)

    ADS  Google Scholar 

  43. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475–478 (2014)

    ADS  Google Scholar 

  44. Scarani, V., Pasquinucci, H.B., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2004)

    ADS  Google Scholar 

  45. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006)

    ADS  Google Scholar 

  46. Shen, Y., Zou, H., Tian, L., Chen, P., Yuan, J.: Experimental study on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A 82, 022317 (2010)

    ADS  Google Scholar 

  47. Shukla, C., Pathak, A.: Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf. Process. 13, 2099–2113 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg–Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 41, 41 (2002)

    Google Scholar 

  51. Usenko, V.C., Grosshans, F.: Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92, 062337 (2015)

    ADS  MathSciNet  Google Scholar 

  52. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    ADS  Google Scholar 

  53. Wang, D., Li, M., Zhu, F., Yin, Z.Q., Chen, W., Han, Z.F., Guo, G.C., Wang, Q.: Quantum key distribution with single-photon-added coherent source. Phys. Rev. A 90, 062315 (2014a)

    ADS  Google Scholar 

  54. Wang, T.Y., Yu, S., Zhang, Y.C., Gu, W.Y., Guo, H.: Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier. Phys. Lett. A 378, 38–39 (2014b)

    ADS  MATH  Google Scholar 

  55. Wang, R., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Round-robin-differential-phase-shift quantum key distribution with monitoring signal disturbance. Opt. Lett. 43, 4228–4231 (2018)

    ADS  Google Scholar 

  56. Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731–2743 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Yang, Y.G., Wen, Q.Y., Zhu, F.C.: An efficient two-step quantum key distribution protocol with orthogonal product states. Chin. Phys. 16, 910–914 (2007)

    Google Scholar 

  58. Zhang, Y.C., Li, Z., Yu, S., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90, 052325 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

This study is supported by Natural Science Foundation of China (Grant No. 61602247) and Natural Science Foundation of Jiangsu Province (Grant No. BK20160840).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huawang Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Xu, H. & Tang, W.K.S. Quantum key distribution with single-particle and Bell state. Opt Quant Electron 52, 338 (2020). https://doi.org/10.1007/s11082-020-02451-0

Download citation

Keywords

  • Quantum key distribution
  • BB84
  • Bell state
  • Quantum cryptography