Implementation of quantum teleportation of photons across an air – water interface

Abstract

Since the theory of quantum mechanics brought about a revolution in physics nearly a century ago, various applications have emerged. In particular, the quantum properties of photons are being studied to provide a solution to some of the challenges faced by existing communication networks, such as security issues and energy efficiency. One of these properties is teleportation, via which information regarding the state of a photon, without its physical motion, can be transmitted across a classical channel. We report, perhaps for the first time, the teleportation of photons across a simulated air–water interface. An entangled pair of photons is generated from a mode-locked laser source, through spontaneous four-wave mixing (SFWM). One of the pair is sent wirelessly to an underwater receiver. Six States of Polarization are teleported sequentially, implementing active feed-forward operation, with the average fidelity of 96.7% surpassing the classical limit. This work is anticipated to lead to the establishment of a quantum communication link between two different media.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5

References

  1. Caspani, L. et al.: Integrated sources of photon quantum states based on nonlinear optics. Light: Sci. Appl. 6, 1–12 (2017)

    Article  Google Scholar 

  2. Gaumnitz, T., et al.: Streaking of 43-attosecond soft X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express 25, 27506–27518 (2017)

    ADS  Article  Google Scholar 

  3. Haltrin, V.I.: One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater. Appl. Opt. 41, 1022–1028 (2002)

    ADS  Article  Google Scholar 

  4. Hanson, F., Radic, S.: High bandwidth underwater optical communication. Appl. Opt. 47, 277–283 (2008)

    ADS  Article  Google Scholar 

  5. Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549, 203–209 (2017)

    ADS  Article  Google Scholar 

  6. Ikonen, J., Salmilehto, J., Mottonen, M.: Energy efficient quantum computing. Npj Quantum Inf. 3, 17 (2017)

    ADS  Article  Google Scholar 

  7. Ji, L., et al.: Towards quantum communications in free-space seawater. Opt. Express 25, 19795–19806 (2017)

    ADS  Article  Google Scholar 

  8. Kaushal, H., Kaddoum, G.: Underwater optical wireless communication. IEEE Access 4, 1518–1547 (2016)

    Article  Google Scholar 

  9. Kogelnik, H., Nelson, L.E., Gordon, J.P., Jopson, R.M.: Jones matrix for second-order polarization mode dispersion. Opt. Lett. 25, 19–21 (2000)

    ADS  Article  Google Scholar 

  10. Kultavewuti, P., et al.: Polarization-entangled photon pair sources based on spontaneous four wave mixing assisted by polarization mode dispersion. Sci. Rep. 7, 5785 (2017)

    ADS  Article  Google Scholar 

  11. Kumar, P. et al.: Quantum Information Processing, vol. 3 (Kluwer Academic-Plenum (2004)

  12. Li, Z.H., Zubairy, M.S., Al-Amri, M.: Quantum secure group communication. Sci. Rep. 8, 3899 (2018)

    ADS  Article  Google Scholar 

  13. Liao, S.K., et al.: Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017)

    ADS  Article  Google Scholar 

  14. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018)

    ADS  Article  Google Scholar 

  15. Lv, N., et al.: 15 µm polarization entanglement generation based on birefringence in silicon wire waveguides. Opt. Lett. 38, 2873–2876 (2013)

    ADS  Article  Google Scholar 

  16. Ma, X.S., et al.: Quantum teleportation over 143 kilometers using active feed-forward. Nature 489, 269–273 (2012)

    ADS  Article  Google Scholar 

  17. Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H., Gisin, N.: Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)

    ADS  Article  Google Scholar 

  18. Peng, Y., Qiao, Y., Xiang, T., Chen, X.: Manipulation of the spontaneous parametric down-conversion process in space and frequency domains via wavefront shaping. Opt. Lett. 43, 3985–3988 (2018)

    ADS  Article  Google Scholar 

  19. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photon. 9, 641–652 (2015)

    ADS  Article  Google Scholar 

  20. Ren, J.G., et al.: Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017)

    ADS  Article  Google Scholar 

  21. Shapiro, J.H.: The quantum theory of optical communications. IEEE Sel. Top. Quantum Electron. 15, 1547–1569 (2009)

    ADS  Article  Google Scholar 

  22. Takesue, H., et al.: Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2, 832–835 (2015)

    ADS  Article  Google Scholar 

  23. Tonolini, F., Adib, F. Networking across boundaries: Enabling wireless communication through the water-air interface. Proc. SIGCOMM’18, Budapest (2018)

  24. Valivarthi, et al.: Quantum teleportation across a metropolitan fiber network. Nat. Photon. 10, 676–680 (2016)

    ADS  Article  Google Scholar 

  25. Werner, R. F.: Quantum Information. Springer Tracts in Modern Physics, vol. 173 Ch 2, Springer, Berlin (2001)

  26. Xu, P., et al.: Two-hierarchy entanglement swapping for a linear optical quantum repeater. Phys. Rev. Lett. 119, 170502 (2017)

    ADS  Article  Google Scholar 

  27. Yin, J., et al.: Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017a)

    Article  Google Scholar 

  28. Yin, J., et al.: Satellite-to-ground entanglement-based quantum key distribution. Phys. Rev. Lett. 119, 200501 (2017b)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Naval Research Board, Defense Research and Development Organization (Grant No. NRB-405/OEP/17–18).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dhanalakshmi Samiappan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakravartula, V., Samiappan, D., Kumar, R. et al. Implementation of quantum teleportation of photons across an air – water interface. Opt Quant Electron 52, 332 (2020). https://doi.org/10.1007/s11082-020-02449-8

Download citation

Keywords

  • Quantum teleportation
  • Air-to-water interface
  • State of polarization
  • Active feedforward
  • Fidelity