Impact of film thickness on optical properties and optoelectrical parameters of novel CuGaGeSe4 thin films synthesized by electron beam deposition

Abstract

The authors in this article present the synthesis of good quality CuGaGeSe4 thin films of different thicknesses using electron beam deposition on well pre-cleaned glass substrates. X-ray diffraction patterns displayed the amorphous nature of as-prepared CuGaGeSe4 thin films. In addition, the elemental compositional analysis of these films was examined by the energy-dispersive X-ray spectroscopy technique, which showed that there is good matching between the selected and detected percentages. Transmittance and reflectance spectra of these CuGaGeSe4 samples were measured to experimentally determine the absorption coefficient and some related optical parameters. Optical band-gap energy values of samples were determined via Tauc’s Plots; they are arisen owing to the indirect allowed transition. They are decreased from 1.43 to 1.29 eV by increasing the film thickness from 250 to 445 nm. The skin depth, absorption index, and refractive index of CuGaGeSe4 thin films were also obtained and extensively studied. As well as, some optoelectrical parameters of these investigated films were discussed, like optical resistivity, optical mobility, optical conductivity, the lattice dielectric constant, and the ratio of the charge carrier concentrations to the effective mass (Nopt/m*). Along with, some nonlinear optical parameters of CuGaGeSe4 films were studied employing Miller’s formulas. The values of the dispersion energy, static refractive index, the static dielectric constant, the oscillator strength and others increase, while the oscillator energy and the relaxation time decrease as the film thickness increased. The obtained results showed that these CuGaGeSe4 film samples can be successfully used as absorption layers in thin-film solar cells.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aldakov, D., Lefrançois, A., Reiss, P.: Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C 1, 3756–3776 (2013)

    Article  Google Scholar 

  2. Alharbi, S.R., Darwish, A.A.A., Al Garni, S.E., ElSaeedy, H.I., El-Rahman, K.F.A.: Influence of thickness and annealing on linear and nonlinear optical properties of manganese (III) chloride tetraphenyl porphine (MnTPPCl) organic thin films. Infrared Phys. Technol. 78, 77–83 (2016)

    ADS  Article  Google Scholar 

  3. Ali, H.A.M., El-Nahass, M.M., El-Zaidia, E.F.M.: Optical and dispersion properties of thermally deposited phenol red thin films. Opt. Laser Technol. 107, 402–407 (2018). https://doi.org/10.1016/j.optlastec.2018.06.001

    ADS  Article  Google Scholar 

  4. AlKhalifah, M.S., El Radaf, I.M., El-Bana, M.S.: New window layer of Cu2CdSn3S8 for thin film solar cells. J. Alloys Compd. 813, 152169 (2020). https://doi.org/10.1016/j.jallcom.2019.152169

    Article  Google Scholar 

  5. Aly, K.A.: Optical band gap and refractive index dispersion parameters of As x Se 70 Te 30 − x (0 ≤ x ≤ 30 at.%) amorphous films. Appl. Phys. A 99, 913–919 (2010)

    ADS  Article  Google Scholar 

  6. Benchikri, M., Zaberca, O., El Ouatib, R., Durand, B., Oftinger, F., Balocchi, A., Chane-Ching, J.-Y.: A high temperature route to the formation of highly pure quaternary chalcogenide particles. Mater. Lett. 68, 340–343 (2012)

    Article  Google Scholar 

  7. Chen, S., Gong, X.G., Walsh, A., Wei, S.-H.: Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI 2 compounds. Phys. Rev. B. 79, 165211 (2009)

    ADS  Article  Google Scholar 

  8. Chen, S., Walsh, A., Luo, Y., Yang, J.-H., Gong, X.G., Wei, S.-H.: Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Phys. Rev. B 82, 195203 (2010)

    ADS  Article  Google Scholar 

  9. Darwish, A.A.A., Rashad, M., Bekheet, A.E., El-Nahass, M.M.: Linear and nonlinear optical properties of GeSe2-xSnx (0 ≤ x ≤ 0.8) thin films for optoelectronic applications. J. Alloys Compd. 709, 640–645 (2017)

    Article  Google Scholar 

  10. Darwish, A.A.A., Qashou, S.I., Rashad, M.: Structural, surface topography and optical investigations of nanostructure films of copper(II) 2,9,16,23-teter-tert-butyl-29H,31H-phthalocyanine controlled at thermal effect. Appl. Phys. A Mater. Sci. Process. (2019). https://doi.org/10.1007/s00339-019-2559-z

    Article  Google Scholar 

  11. El Radaf, I.M.: Structural, optical, optoelectrical and photovoltaic properties of the thermally evaporated Sb2Se3 thin films. Appl. Phys. A 125, 832 (2019)

    ADS  Article  Google Scholar 

  12. El Radaf, I.M., Abdelhameed, R.M.: Surprising performance of graphene oxide/tin dioxide composite thin films. J. Alloys Compd. 765, 1174–1183 (2018)

    Article  Google Scholar 

  13. El Radaf, I.M., Fouad, S.S., Ismail, A.M., Sakr, G.B.: Influence of spray time on the optical and electrical properties of CoNi2S4 thin films. Mater. Res. Express 5, 46406 (2018a)

    Article  Google Scholar 

  14. El Radaf, I.M., Hamid, T.A., Yahia, I.S.: Synthesis and characterization of F-doped CdS thin films by spray pyrolysis for photovoltaic applications. Mater. Res. Express (2018b). https://doi.org/10.1088/2053-1591/aaca7b

    Article  Google Scholar 

  15. El Radaf, I.M., Elsaeedy, H.I., Yakout, H.A., El Sayed, M.T.: Junction Parameters and Electrical Characterization of the Al/n-Si/Cu2CoSnS4/Au Heterojunction. J. Electron. Mater. (2019a). https://doi.org/10.1007/s11664-019-07445-7

    Article  Google Scholar 

  16. El Radaf, I.M., Hameed, T.A., El Komy, G.M., Dahy, T.M.: Synthesis, structural, linear and nonlinear optical properties of chromium doped SnO2 thin films. Ceram. Int. 45, 3072–3080 (2019b). https://doi.org/10.1016/j.ceramint.2018.10.189

    Article  Google Scholar 

  17. El Radaf, I.M., Al-Zahrani, H.Y.S., Hassanien, A.S.: Novel synthesis, structural, linear and nonlinear optical properties of p-type kesterite nanosized Cu2MnGeS4 thin films. J. Mater. Sci. Mater. Electron. 31, 8336–8348 (2020). https://doi.org/10.1007/s10854-020-03369-9

    Article  Google Scholar 

  18. El-Bana, M.S., El Radaf, I.M., Fouad, S.S., Sakr, G.B.: Structural and optoelectrical properties of nanostructured LiNiO2 thin films grown by spray pyrolysis technique. J. Alloys Compd. 705, 333–339 (2017)

    Article  Google Scholar 

  19. El-Nahass, M.M., Farag, A.A.M.: Structural, optical and dispersion characteristics of nanocrystalline GaN films prepared by MOVPE. Opt. Laser Technol. 44, 497–503 (2012). https://doi.org/10.1016/j.optlastec.2011.08.021

    ADS  Article  Google Scholar 

  20. Elsaeedy, H.I.: Growth, structure, optical and optoelectrical characterizations of the Cu2 NiSnS4 thin films synthesized by spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 30, 12545–12554 (2019)

    Article  Google Scholar 

  21. Fouad, S.S., El-Shazly, E.A.A., Balboul, M.R., Fayek, S.A., El-Bana, M.S.: Optical parameter studies of thermally evaporated As–Se–Sn glassy system. J. Mater. Sci. Mater. Electron. 17, 193–198 (2006)

    Article  Google Scholar 

  22. Fouad, S.S., El Radaf, I.M., Sharma, P., El-Bana, M.S.: Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties. J. Alloys Compd. 757, 124–133 (2018)

    Article  Google Scholar 

  23. Ganesh, V., Yahia, I.S., AlFaify, S., Shkir, M.: Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids 100, 115–125 (2017)

    ADS  Article  Google Scholar 

  24. Hameed, T.A., El Radaf, I.M., Elsayed-Ali, H.E.: Characterization of CuInGeSe4 thin films and Al/n–Si/p–CuInGeSe4/Au heterojunction device. J. Mater. Sci. Mater. Electron. 29, 12584–12594 (2018). https://doi.org/10.1007/s10854-018-9375-7

    Article  Google Scholar 

  25. Hameed, T.A., Wassel, A.R., El Radaf, I.M.: Investigating the effect of thickness on the structural, morphological, optical and electrical properties of AgBiSe2 thin films. J. Alloys Compd. 805, 1–11 (2019). https://doi.org/10.1016/j.jallcom.2019.07.041

    Article  Google Scholar 

  26. Hamrouni, S., AlKhalifah, M.S., El-Bana, M.S., Zobaidi, S.K., Belgacem, S.: Deposition and characterization of spin-coated n-type ZnO thin film for potential window layer of solar cell. Appl. Phys. A 124, 555 (2018)

    ADS  Article  Google Scholar 

  27. Hassanien, A.S.: Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd50S50− xSex thin films. J. Alloys Compd. 671, 566–578 (2016)

    Article  Google Scholar 

  28. Hassanien, A.S., Akl, A.A.: Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50− xSex thin films. J. Alloys Compd. 648, 280–290 (2015)

    Article  Google Scholar 

  29. Hassanien, A.S., Akl, A.A.: Effects of Se on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)

    ADS  Article  Google Scholar 

  30. Hassanien, A.S., Akl, A.A.: Influence of thermal and compositional variations on conduction mechanisms and localized state density of amorphous Cd50S50−xSex thin films. J. Non-Cryst. Solids 487, 28–36 (2018a). https://doi.org/10.1016/j.jnoncrysol.2018.02.018

    ADS  Article  Google Scholar 

  31. Hassanien, A.S., Akl, A.A.: Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl. Phys. A 124, 752 (2018b). https://doi.org/10.1007/s00339-018-2180-6

    ADS  Article  Google Scholar 

  32. Hassanien, A.S., Akl, A.A.: X-ray studies: CO2 pulsed laser annealing effects on the crystallographic properties, microstructures and crystal defects of vacuum-deposited nanocrystalline ZnSe thin films. CrystEngComm 20(44), 7120–7129 (2018c)

    Article  Google Scholar 

  33. Hassanien, A.S., Akl, A.A.: Optical characterizations and refractive index dispersion parameters of annealed TiO2 thin films synthesized by RF-sputtering technique at different flow rates of the reactive oxygen gas. Physica B 576, 411718 (2020). https://doi.org/10.1016/j.physb.2019.411718

    Article  Google Scholar 

  34. Hassanien, A.S., El Radaf, I.M.: Optical characterizations of quaternary Cu2MnSnS4 thin films: novel synthesis process of film samples by spray pyrolysis technique. Phys. B 585, 412110 (2020). https://doi.org/10.1016/j.physb.2020.412110

    Article  Google Scholar 

  35. Hassanien, A.S., Sharma, I.: Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge15−x Sbx Se50 Te35 thin films: influences of Sb upon some optical characterizations and physical parameters. J. Alloys Compd. 798, 750–763 (2019). https://doi.org/10.1016/j.jallcom.2019.05.252

    Article  Google Scholar 

  36. Hassanien, A.S., Sharma, I.: Optical properties of quaternary a-Ge15−xSbx Se50 Te35 thermally evaporated thin-films: refractive index dispersion and single oscillator parameters. Optik 200, 163415 (2020). https://doi.org/10.1016/j.ijleo.2019.163415

    ADS  Article  Google Scholar 

  37. Hassanien, A.S., Aly, K.A., Akl, A.A.: Optical properties of thermally evaporated ZnSe thin films annealed at different pulsed leaser powers. J. Alloys Compd. 685, 733–742 (2016)

    Article  Google Scholar 

  38. Hassanien, A.S., Sharma, I., Akl, A.A.: Physical and optical properties of Ge15-xSbxSe50Te35 bulk and film samples: refractive index and its association with electronic polarizability of thermally evaporated a-Ge–Sb–Se–Te thin-films. J. Non-Cryst. Solids 531, 119853 (2020a). https://doi.org/10.1016/j.jnoncrysol.2019.119853

    ADS  Article  Google Scholar 

  39. Hassanien, A.S., Neffati, R., Aly, K.A.: Impact of Cd-addition upon optical properties and dispersion parameters of thermally evaporated CdxZn1-xSe films: discussions on bandgap engineering, conduction and valence band positions. Optik 212, 164681 (2020b). https://doi.org/10.1016/j.ijleo.2020.164681

    ADS  Article  Google Scholar 

  40. Jebathew, A.J., Karunakaran, M., Kumar, K.D.A., Valanarasu, S., Ganesh, V., Shkir, M., Yahia, I.S., Zahran, H.Y., Kathalingam, A.: An effect of Gd3 + doping on core properties of ZnS thin films prepared by nebulizer spray pyrolysis (NSP) method. Phys. B Condens. Matter. 574, 411674 (2019)

    Article  Google Scholar 

  41. Kayani, Z.N., Arshad, S., Riaz, S., Naseem, S.: Investigation of structural, optical and magnetic characteristics of Co3O4 thin films. Appl. Phys. A Mater. Sci. Process. (2019). https://doi.org/10.1007/s00339-019-2501-4

    Article  Google Scholar 

  42. Liu, M.-L., Huang, F.-Q., Chen, L.-D., Chen, I.-W.: A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2 ZnSn Q 4 (Q = S, Se). Appl. Phys. Lett. 94, 202103 (2009)

    ADS  Article  Google Scholar 

  43. Mohamed, M., Shaaban, E.R., Abd-el Salam, M.N., Abdel-Latief, A.Y., Mahmoud, S.A., Abdel-Rahim, M.A.: Investigation of the optical and electrical parameters of As47.5Se47.5Ag5 thin films with different thicknesses for optoelectronic applications. Optik 178, 1302–1312 (2019). https://doi.org/10.1016/j.ijleo.2018.10.103

    ADS  Article  Google Scholar 

  44. Mott, N.F., Davis, E.A.: Electronic Processes in Non-crystalline Materials. Clarendon Press, Oxford (1979)

    Google Scholar 

  45. Ramasamy, K., Malik, M.A., O’Brien, P.: Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. Chem. Commun. (2012). https://doi.org/10.1039/c2cc30792h

    Article  Google Scholar 

  46. Ramasamy, P., Kim, M., Ra, H.-S., Kim, J., Lee, J.-S.: Bandgap tunable colloidal Cu-based ternary and quaternary chalcogenide nanosheets via partial cation exchange. Nanoscale 8, 7906–7913 (2016)

    ADS  Article  Google Scholar 

  47. Sawaby, A., Selim, M.S., Marzouk, S.Y., Mostafa, M.A., Hosny, A.: Structure, optical and electrochromic properties of NiO thin films. Phys. B Condens. Matter. 405, 3412–3420 (2010)

    ADS  Article  Google Scholar 

  48. Schäfer, W., Nitsche, R.: Tetrahedral quaternary chalcogenides of the type Cu2-II-IV-S4 (Se4). Mater. Res. Bull. 9, 645–654 (1974)

    Article  Google Scholar 

  49. Schurr, R., Hölzing, A., Jost, S., Hock, R., Voß, T., Schulze, J., Kirbs, A., Ennaoui, A., Lux-Steiner, M., Weber, A., Kötschau, I., Schock, H.W.: The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors. Thin Solid Films (2009). https://doi.org/10.1016/j.tsf.2008.11.019

    Article  Google Scholar 

  50. Scragg, J.J., Dale, P.J., Peter, L.M.: Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route. Thin Solid Films (2009). https://doi.org/10.1016/j.tsf.2008.11.022

    Article  Google Scholar 

  51. Sharma, P., Katyal, S.C.: Effect of tin addition on the optical parameters of thermally evaporated As–Se–Ge thin films. Mater. Chem. Phys. 112, 892–897 (2008)

    Article  Google Scholar 

  52. Sharma, P., El-Bana, M.S., Fouad, S.S., Sharma, V.: Effect of compositional dependence on physical and optical parameters of Te17Se83 − xBix glassy system. J. Alloys Compd. 667, 204–210 (2016)

    Article  Google Scholar 

  53. Shi, J.H., Li, Z.Q., Zhang, D.W., Liu, Q.Q., Sun, Z., Huang, S.M.: Fabrication of Cu (In, Ga) Se2 thin films by sputtering from a single quaternary chalcogenide target. Prog. Photovolt. Res. Appl. 19, 160–164 (2011)

    Article  Google Scholar 

  54. Shi, C., Shi, G., Chen, Z., Yang, P., Yao, M.: Deposition of Cu2ZnSnS4 thin films by vacuum thermal evaporation from single quaternary compound source. Mater. Lett. 73, 89–91 (2012)

    Article  Google Scholar 

  55. Shkir, M., Arif, M., Singh, A., Yahia, I.S., Algarni, H., AlFaify, S.: A facile one-step flash combustion synthesis and characterization on C doped NiO nanostructures. Mater. Sci. Semicond. Process. 100, 106–112 (2019a). https://doi.org/10.1016/j.mssp.2019.04.038

    Article  Google Scholar 

  56. Shkir, M., Khan, A., El-Toni, A.M., Aldalbahi, A., Yahia, I.S., AlFaify, S.: Structural, morphological, opto-nonlinear-limiting studies on Dy:pbI 2/FTO thin films derived facilely by spin coating technique for optoelectronic technology. J. Phys. Chem. Solids 130, 189–196 (2019b). https://doi.org/10.1016/j.jpcs.2019.02.030

    ADS  Article  Google Scholar 

  57. Tauc, J., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627–637 (1966)

    Article  Google Scholar 

  58. Wemple, S.H.: Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B. 7, 3767 (1973)

    ADS  Article  Google Scholar 

  59. Wemple, S.H., DiDomenico Jr., M.: Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971)

    ADS  Article  Google Scholar 

  60. Yahia, I.S., El Radaf, I.M., Salem, A.M., Sakr, G.B.: Chemically deposited Ni-doped CdS nanostructured thin films: optical analysis and current–voltage characteristics. J. Alloys Compd. 776, 1056–1062 (2019)

    Article  Google Scholar 

  61. Zamani, R.R., Ibánez, M., Luysberg, M., Garcia-Castello, N., Houben, L., Prades, J.D., Grillo, V., Dunin-Borkowski, R.E., Morante, J.R., Cabot, A.: Polarity-driven polytypic branching in Cu-based quaternary chalcogenide nanostructures. ACS Nano 8, 2290–2301 (2014)

    Article  Google Scholar 

  62. Ziti, A., Hartiti, B., Labrim, H., Fadili, S., Tchognia Nkuissi, H.J., Ridah, A., Tahri, M., Thevenin, P.: Effect of copper concentration on physical properties of CZTS thin films deposited by dip-coating technique. Appl. Phys. A Mater. Sci. Process. (2019). https://doi.org/10.1007/s00339-019-2513-0

    Article  Google Scholar 

Download references

Funding

This research was not funded by any authority, entity or individual other than the authors themselves. The authors have born all the costs of the work

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. M. El Radaf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassanien, A.S., Alamri, H.R. & El Radaf, I.M. Impact of film thickness on optical properties and optoelectrical parameters of novel CuGaGeSe4 thin films synthesized by electron beam deposition. Opt Quant Electron 52, 335 (2020). https://doi.org/10.1007/s11082-020-02448-9

Download citation

Keywords

  • CuGaGeSe4 thin films
  • Electron beam deposition
  • Optical conductivity
  • Optical constants
  • Third-order nonlinear optical susceptibility